Table of Contents
前言
两个数的最值
交换两个数
向量vector
string 类实现
IsAlpha
IsSpace
字符串trim
切割字符串
正则匹配
日志系统
变参的实现
二进制1的个数
整数二进制的位数
模板 堆排序
快速排序
二分查找
数组去重
Home Database Mysql Tutorial sphinx 源码阅读之数据结构与算法

sphinx 源码阅读之数据结构与算法

Jun 07, 2016 pm 04:41 PM
sphinx Preface data structure Source code algorithm read

前言 源码在 sphinx 官网上就可以下载到. 起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。 于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取

cover

前言

源码在 sphinx 官网上就可以下载到.
起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。
于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取消这个念头。
后来,我想我看sphinx源码主要是先弄明白 sphinx 的工作原理,而工作原理应该一直都是保持不变的,于是我就去下载第一个版本。
第一个版本果然给力,只有 1W 行,于是我就开始高高兴兴的开始从 main 函数开始看源代码了。
看了不就发现 sphinx 用了很多数据结构,而且是自己等装好的,还是先把这些数据结构弄明白了比较好。
于是就有了这篇文章。
为了方便读者阅读,这些数据结构和算法就从简单的慢慢罗列出来。

大家可以看右面的目录,然后去看自己感兴趣的数据结构或算法对应的小节。
如果对那个小节有疑问,可以随时留言。

两个数的最值

sphinx 把最值封装成了一个宏。

#define Min(a,b)            ((a)<(b)?(a):(b))
#define Max(a,b)            ((a)>(b)?(a):(b))
Copy after login

交换两个数

为了这个通用,使用了基本的模板函数。
而交换则使用第三个缓存变量来实现这个功能。

template<typename T> 
inline void Swap(T & v1, T & v2) {
    T temp = v1;
    v1 = v2;
    v2 = temp;
}
Copy after login

向量vector

这个 vector 实现的功能很简单,基本的 insert,remove,get, set 等操作。
只是附加了一个排序功能。
具体实现方式这里就不多说了,这些都是一个类基本的操作,都很容易实现(需要谁需要这个vector的实现讲解,可以留言)。

template<typename T, int INITIAL_LIMIT = 1024> 
class CSphVector {
    public:
        CSphVector(); //初始化向量
        ~CSphVector(); //回收向量
        T & Add(); //增加一个元素,返回这个元素的引用
        void Add(const T & tValue);//增加一个元素
        T & Last();//得到最后一个元素
        void Remove(int iIndex);//删除指定位置的元素
        void Grow(int iNewLimit);//扩大缓存的大小,两倍两倍的增长
        void Resize(int iNewLength);// 原先设置数组的大小
        void Reset();// 重置数组
        int GetLength();//得到数组的长度
        void Sort(int iStart = 0, int iEnd = -1);// 正常排序
        void RSort(int iStart = 0, int iEnd = -1);// 逆序
        const T & operator [](int iIndex) const;// 读指定位置的值
        T & operator [](int iIndex);// 设置指定位置的值
    private:
        int m_iLength;//数组大小
        int m_iLimit;//数组缓存大小
        T * m_pData;//数组
};
Copy after login

string 类实现

这次 sphinx 自己实现的 string 类的功能就比较多了。
这里我罗列出一些比较简单的功能。

struct CSphString{
    CSphString (); //构造
    CSphString ( const char * sString );
    CSphString ( const CSphString & rhs ); 
    CSphString ( const char * sValue, int iLen );
    ~CSphString (); //析构
    const char * cstr () const; //得到字符串
    const char * scstr() const;//得到字符串,默认未空串
    inline bool operator == ( const char * t ) const; //判断两个串是否相等
    inline bool operator == ( const CSphString & t ) const;
    inline bool operator != ( const CSphString & t ) const;
    bool operator != ( const char * t ) const;
    const CSphString & operator = ( const CSphString & rhs );
    CSphString SubString ( int iStart, int iCount ) const;
    bool IsEmpty () const;
    CSphString & ToLower ();
    CSphString & ToUpper ();
    int Length () const;
    bool operator < ( const CSphString & b );
};
Copy after login

IsAlpha

判断一个字符是不是自己想要的字符。

inline int sphIsAlpha ( int c ){
    return ( c>='0' && c<='9' ) || ( c>='a' && c<='z' ) || ( c>='A' && c<='Z' ) || c=='-' || c=='_';
}
Copy after login

IsSpace

判断一个字符是不是空白

inline bool sphIsSpace ( int iCode ){
    return iCode==' ' || iCode=='\t' || iCode=='\n' || iCode=='\r';
}
Copy after login

字符串trim

字符串 trim 这个功能很常用,取出前边和后边的空白。

static char * ltrim ( char * sLine ){
    while ( *sLine && isspace(*sLine) )
        sLine++;
    return sLine;
}
static char * rtrim ( char * sLine ){
    char * p = sLine + strlen(sLine) - 1;
    while ( p>=sLine && isspace(*p) )
        p--;
    p[1] = '\0';
    return sLine;
}
static char * trim ( char * sLine ){
    return ltrim ( rtrim ( sLine ) );
}
Copy after login

切割字符串

切割字符串也是很常用的函数。
一般需要指定分隔符,默认分隔符是空白。
具体的实现代码这里就不展示了。

void sphSplit ( CSphVector<CSphString> & dOut, const char * sIn, const char * sBounds ){
    if ( !sIn )return;
    const char * p = (char*)sIn;
    while ( *p ){
        // skip until the first non-boundary character
        const char * sNext = p;
        while ( *p && !strchr ( sBounds, *p ) )p++;
        // add the token, skip the char
        dOut.Add().SetBinary ( sNext, p-sNext );
        p++;
    }
}
Copy after login

正则匹配

正则表达式大家都用过吧,这次 sphinx 实现了一个简单的正则表达式检验函数。
主要用于检验一个字符串是否符合指定的格式。

bool sphWildcardMatch ( const char * sString, const char * sPattern ){
    if ( !sString || !sPattern )return false;
    const char * s = sString;
    const char * p = sPattern;
    while ( *s ){
        switch ( *p ){
        case '\\':
            // escaped char, strict match the next one literally
            p++;
            if ( *s++!=*p++ )return false;
            break;
        case '?':
            // match any character
            s++;
            p++;
            break;
        case '%':
            // gotta match either 0 or 1 characters
            // well, lets look ahead and see what we need to match next
            p++;
            // just a shortcut, %* can be folded to just *
            if ( *p=='*' )break;
            // plain char after a hash? check the non-ambiguous cases
            if ( !sphIsWild(*p) ){
                if ( s[0]!=*p ){
                    // hash does not match 0 chars
                    // check if we can match 1 char, or it's a no-match
                    if ( s[1]!=*p )return false;
                    s++;
                    break;
                } else{
                    // hash matches 0 chars
                    // check if we could ambiguously match 1 char too, though
                    if ( s[1]!=*p )break;
                    // well, fall through to "scan both options" route
                }
            }
            // could not decide yet
            // so just recurse both options
            if ( sphWildcardMatch ( s, p ) )return true;
            if ( sphWildcardMatch ( s+1, p ) )return true;
            return false;
        case '*':
            // skip all the extra stars and question marks
            for ( p++; *p=='*' || *p=='?'; p++ )
                if ( *p=='?' ){
                    s++;
                    if ( !*s )return p[1]=='\0';
                }
                // short-circuit trailing star
                if ( !*p )return true;
                // so our wildcard expects a real character
                // scan forward for its occurrences and recurse
                for ( ;; ){
                    if ( !*s )return false;
                    if ( *s==*p && sphWildcardMatch ( s+1, p+1 ) )return true;
                    s++;
                }
                break;
        default:
            // default case, strict match
            if ( *s++!=*p++ )return false;
            break;
        }
    }
    // string done
    // pattern should be either done too, or a trailing star, or a trailing hash
    return p[0]=='\0'|| ( p[0]=='*' && p[1]=='\0' )|| ( p[0]=='%' && p[1]=='\0' );
}
Copy after login

日志系统

做项目的时候经常会遇到一些打日志的库,其实这个功能很简单。
基本原理都是使用和 printf 类似的方法: 变参。

static void StdoutLogger ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){
    switch ( eLevel ){
        case SPH_LOG_FATAL: fprintf ( stdout, "FATAL: " ); break;
        case SPH_LOG_WARNING: fprintf ( stdout, "WARNING: " ); break;
        case SPH_LOG_INFO: fprintf ( stdout, "WARNING: " ); break;
        case SPH_LOG_DEBUG:  fprintf ( stdout, "DEBUG: " ); break;
    }
    vfprintf ( stdout, sFmt, ap );
    fprintf ( stdout, "\n" );
}
static SphLogger_fn g_pLogger = &StdoutLogger;
inline void Log ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){
    if ( !g_pLogger ) return;
    ( *g_pLogger ) ( eLevel, sFmt, ap );
}
void sphWarning ( const char * sFmt, ... ){
    va_list ap;
    va_start ( ap, sFmt );
    Log ( SPH_LOG_WARNING, sFmt, ap );
    va_end ( ap );
}
void sphInfo ( const char * sFmt, ... );
void sphLogFatal ( const char * sFmt, ... );
void sphLogDebug ( const char * sFmt, ... );
Copy after login

变参的实现

上面的日志系统,最后还是调用了 vfprintf 函数, 没有让我们看到变参到底怎么实现的。
但是 sphinx 自己实现了一个 sphVSprintf 函数,和 vfprintf 类似,我不明白那个日志系统为什么不用自己的这个输出函数。
由于是对字符串分析,可以理解为一个简单的自动机。
遇到什么字符,期望下个字符是什么。
这里就不多说这个自动机了。

static int sphVSprintf ( char * pOutput, const char * sFmt, va_list ap ){
    enum eStates { SNORMAL, SPERCENT, SHAVEFILL, SINWIDTH, SINPREC };
    eStates state = SNORMAL;
    int iPrec = 0;
    int iWidth = 0;
    char cFill = ' ';
    const char * pBegin = pOutput;
    bool bHeadingSpace = true;
    char c;
    while ( ( c = *sFmt++ )!=0 ){
        // handle percent
        if ( c=='%' ){
            if ( state==SNORMAL ){
                state = SPERCENT;
                iPrec = 0;
                iWidth = 0;
                cFill = ' ';
            } else{
                state = SNORMAL;
                *pOutput++ = c;
            }
            continue;
        }
        // handle regular chars
        if ( state==SNORMAL ){
            *pOutput++ = c;
            continue;
        }
        // handle modifiers
        switch ( c ){
            case '0':
                if ( state==SPERCENT ){
                    cFill = '0';
                    state = SHAVEFILL;
                    break;
                }
            case '1': case '2': case '3':
            case '4': case '5': case '6':
            case '7': case '8': case '9':
                if ( state==SPERCENT || state==SHAVEFILL )
                {
                    state = SINWIDTH;
                    iWidth = c - '0';
                } else if ( state==SINWIDTH )
                    iWidth = iWidth * 10 + c - '0';
                else if ( state==SINPREC )
                    iPrec = iPrec * 10 + c - '0';
                break;
            case '-':
                if ( state==SPERCENT )
                    bHeadingSpace = false;
                else
                    state = SNORMAL; // FIXME? means that bad/unhandled syntax with dash will be just ignored
                break;
            case '.':
                state = SINPREC;
                iPrec = 0;
                break;
            case 's': // string
                {
                    const char * pValue = va_arg ( ap, const char * );
                    if ( !pValue )
                        pValue = "(null)";
                    int iValue = strlen ( pValue );
                    if ( iWidth && bHeadingSpace )
                        while ( iValue < iWidth-- )
                            *pOutput++ = ' ';
                    if ( iPrec && iPrec < iValue )
                        while ( iPrec-- )
                            *pOutput++ = *pValue++;
                    else
                        while ( *pValue )
                            *pOutput++ = *pValue++;
                    if ( iWidth && !bHeadingSpace )
                        while ( iValue < iWidth-- )
                            *pOutput++ = ' ';
                    state = SNORMAL;
                    break;
                }
            case 'p': // pointer
                {
                    void * pValue = va_arg ( ap, void * );
                    uint64_t uValue = uint64_t ( pValue );
                    UItoA ( &pOutput, uValue, 16, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            case 'x': // hex integer
            case 'd': // decimal integer
                {
                    DWORD uValue = va_arg ( ap, DWORD );
                    UItoA ( &pOutput, uValue, ( c=='x' ) ? 16 : 10, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            case 'l': // decimal int64
                {
                    int64_t iValue = va_arg ( ap, int64_t );
                    UItoA ( &pOutput, iValue, 10, iWidth, iPrec, cFill );
                    state = SNORMAL;
                    break;
                }
            default:
                state = SNORMAL;
                *pOutput++ = c;
        }
    }
    // final zero to EOL
    *pOutput++ = '\n';
    return pOutput - pBegin;
}
Copy after login

二进制1的个数

之前我曾写过一篇文章详解二进制数中1的个数,大家可以看看。

inline int sphBitCount ( DWORD n ){
    register DWORD tmp;
    tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111);
    return ( (tmp + (tmp >> 3) ) & 030707070707) % 63;
}
Copy after login

整数二进制的位数

/// how much bits do we need for given int
inline int sphLog2 ( uint64_t uValue )
{
#if USE_WINDOWS
    DWORD uRes;
    if ( BitScanReverse ( &uRes, (DWORD)( uValue>>32 ) ) )
        return 33+uRes;
    BitScanReverse ( &uRes, DWORD(uValue) );
    return 1+uRes;
#elif __GNUC__ || __clang__
    if ( !uValue )
        return 0;
    return 64 - __builtin_clzl(uValue);
#else
    int iBits = 0;
    while ( uValue )
    {
        uValue >>= 1;
        iBits++;
    }
    return iBits;
#endif
}
Copy after login

模板 堆排序

这个堆排序写的太奇葩了,哎,不能说什么了。

/// generic accessor
template < typename T > struct SphAccessor_T{
    T & Key ( T * a ) const; //得到指针的值
    void CopyKey ( T * pMed, T * pVal ) const;
    void Swap ( T * a, T * b ) const;
    T * Add ( T * p, int i ) const;//第i个位置的指针
    int Sub ( T * b, T * a ) const;//指针偏移量
};
/// heap sort helper
// 自底向上进行堆排序
//pData 带排序数组
//iStart 开始位置
//iEnd 结束位置
//COMP 比较函数
//ACC 访问指针的类
template < typename T, typename U, typename V >
void sphSiftDown ( T * pData, int iStart, int iEnd, U COMP, V ACC ){
    for ( ;; ){
        int iChild = iStart*2+1;
        if ( iChild>iEnd )return;
        int iChild1 = iChild+1;
        if ( iChild1<=iEnd && COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iChild1 ) ) ) )
            iChild = iChild1;
        if ( COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iStart ) ) ) )
            return;
        ACC.Swap ( ACC.Add ( pData, iChild ), ACC.Add ( pData, iStart ) );
        iStart = iChild;
    }
}
/// heap sort
//奇葩的是先求出最大堆,然后反转,还边反转边维护堆。  
//最终是个最小堆。  
template < typename T, typename U, typename V >
void sphHeapSort ( T * pData, int iCount, U COMP, V ACC ){
    if ( !pData || iCount<=1 )
        return;
    // build a max-heap, so that the largest element is root
    for ( int iStart=( iCount-2 )>>1; iStart>=0; iStart-- )
        sphSiftDown ( pData, iStart, iCount-1, COMP, ACC );
    // now keep popping root into the end of array
    for ( int iEnd=iCount-1; iEnd>0; ){
        ACC.Swap ( pData, ACC.Add ( pData, iEnd ) );
        sphSiftDown ( pData, 0, --iEnd, COMP, ACC );
    }
}
Copy after login

快速排序

sphinx 的快速排序也很奇葩。
一般的快速排序是递归,sphinx使用栈模拟递归。
这样栈的大小大概就是 log(n) 了。
而且栈为空的时候共有 log(n) 次。
当数据特殊的时候,快排会退化为 n^2 的复杂度,这个时候,栈为空的几率变大了。
于是 sphinx 加了个修复, 当栈为空的次数大于 2.5 * log(n), 就是用上面那个奇葩的堆排序。
不过这个优化作用不大。

另外这个快排加了一个小优化:当需要排序的数量小于32时,使用插入排序。

template < typename T, typename U, typename V >
void sphSort ( T * pData, int iCount, U COMP, V ACC ){
    if ( iCount<2 )return;
    typedef T * P;
    // st0 and st1 are stacks with left and right bounds of array-part.
    // They allow us to avoid recursion in quicksort implementation.
    P st0[32], st1[32], a, b, i, j;
    typename V::MEDIAN_TYPE x;
    int k;
    const int SMALL_THRESH = 32;
    int iDepthLimit = sphLog2 ( iCount );
    iDepthLimit = ( ( iDepthLimit<<2 ) + iDepthLimit ) >> 1; // x2.5
    k = 1;
    st0[0] = pData;
    st1[0] = ACC.Add ( pData, iCount-1 );
    while ( k ){
        k--;
        i = a = st0[k];
        j = b = st1[k];
        // if quicksort fails on this data; switch to heapsort
        if ( !k ){
            if ( !--iDepthLimit ){
                sphHeapSort ( a, ACC.Sub ( b, a )+1, COMP, ACC );
                return;
            }
        }
        // for tiny arrays, switch to insertion sort
        int iLen = ACC.Sub ( b, a );
        if ( iLen<=SMALL_THRESH ){
            for ( i=ACC.Add ( a, 1 ); i<=b; i=ACC.Add ( i, 1 ) ){
                for ( j=i; j>a; ){
                    P j1 = ACC.Add ( j, -1 );
                    if ( COMP.IsLess ( ACC.Key(j1), ACC.Key(j) ) )
                        break;
                    ACC.Swap ( j, j1 );
                    j = j1;
                }
            }
            continue;
        }
        // ATTENTION! This copy can lead to memleaks if your CopyKey
        // copies something which is not freed by objects destructor.
        ACC.CopyKey ( &x, ACC.Add ( a, iLen/2 ) );
        while ( a<b ){
            while ( i<=j ){
                while ( COMP.IsLess ( ACC.Key(i), x ) )
                    i = ACC.Add ( i, 1 );
                while ( COMP.IsLess ( x, ACC.Key(j) ) )
                    j = ACC.Add ( j, -1 );
                if ( i<=j ){
                    ACC.Swap ( i, j );
                    i = ACC.Add ( i, 1 );
                    j = ACC.Add ( j, -1 );
                }
            }
            // Not so obvious optimization. We put smaller array-parts
            // to the top of stack. That reduces peak stack size.
            if ( ACC.Sub ( j, a )>=ACC.Sub ( b, i ) ){
                if ( a<j ) { st0[k] = a; st1[k] = j; k++; }
                a = i;
            } else{
                if ( i<b ) { st0[k] = i; st1[k] = b; k++; }
                b = j;
            }
        }
    }
}
Copy after login

二分查找

sphinx 的这个二分查找没有问题,但是和我们平常的二分查找还是有点不同的。
它的左右边界都是开放的,即(a,b).

/// generic binary search
template < typename T, typename U, typename PRED >
T * sphBinarySearch ( T * pStart, T * pEnd, const PRED & tPred, U tRef ){
    if ( tPred(*pStart)==tRef )return pStart;
    if ( tPred(*pEnd)==tRef )return pEnd;
    while ( pEnd-pStart>1 ){
        if ( tRef<tPred(*pStart) || tPred(*pEnd)<tRef )break;
        T * pMid = pStart + (pEnd-pStart)/2;
        if ( tRef==tPred(*pMid) )return pMid;
        if ( tRef<tPred(*pMid) )pEnd = pMid;
        else pStart = pMid;
    }
    return NULL;
}
Copy after login

数组去重

要想去重,首先需要排序,所以这里假设容器是已经排完序的了。
然后假设 iDst 的上一个就是目前比较的值。
如果和上一个相等,则iSrc后移。
如果和上一个不相等,则找到一个新的值,将iDst位置置为新值,个数加1即可。

/// generic uniq
template < typename T, typename T_COUNTER >
T_COUNTER sphUniq ( T * pData, T_COUNTER iCount ){
    if ( !iCount )return 0;
    T_COUNTER iSrc = 1, iDst = 1;
    while ( iSrc<iCount ){
        if ( pData[iDst-1]==pData[iSrc] )iSrc++;
        else pData[iDst++] = pData[iSrc++];
    }
    return iDst;
}
Copy after login
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
1 months ago By 尊渡假赌尊渡假赌尊渡假赌
Two Point Museum: All Exhibits And Where To Find Them
1 months ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Implementing Machine Learning Algorithms in C++: Common Challenges and Solutions Jun 03, 2024 pm 01:25 PM

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

Compare complex data structures using Java function comparison Compare complex data structures using Java function comparison Apr 19, 2024 pm 10:24 PM

When using complex data structures in Java, Comparator is used to provide a flexible comparison mechanism. Specific steps include: defining the comparator class, rewriting the compare method to define the comparison logic. Create a comparator instance. Use the Collections.sort method, passing in the collection and comparator instances.

Improved detection algorithm: for target detection in high-resolution optical remote sensing images Improved detection algorithm: for target detection in high-resolution optical remote sensing images Jun 06, 2024 pm 12:33 PM

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

Application of algorithms in the construction of 58 portrait platform Application of algorithms in the construction of 58 portrait platform May 09, 2024 am 09:01 AM

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

Java data structures and algorithms: in-depth explanation Java data structures and algorithms: in-depth explanation May 08, 2024 pm 10:12 PM

Data structures and algorithms are the basis of Java development. This article deeply explores the key data structures (such as arrays, linked lists, trees, etc.) and algorithms (such as sorting, search, graph algorithms, etc.) in Java. These structures are illustrated through practical examples, including using arrays to store scores, linked lists to manage shopping lists, stacks to implement recursion, queues to synchronize threads, and trees and hash tables for fast search and authentication. Understanding these concepts allows you to write efficient and maintainable Java code.

PHP data structure: The balance of AVL trees, maintaining an efficient and orderly data structure PHP data structure: The balance of AVL trees, maintaining an efficient and orderly data structure Jun 03, 2024 am 09:58 AM

AVL tree is a balanced binary search tree that ensures fast and efficient data operations. To achieve balance, it performs left- and right-turn operations, adjusting subtrees that violate balance. AVL trees utilize height balancing to ensure that the height of the tree is always small relative to the number of nodes, thereby achieving logarithmic time complexity (O(logn)) search operations and maintaining the efficiency of the data structure even on large data sets.

Groundbreaking CVM algorithm solves more than 40 years of counting problems! Computer scientist flips coin to figure out unique word for 'Hamlet' Groundbreaking CVM algorithm solves more than 40 years of counting problems! Computer scientist flips coin to figure out unique word for 'Hamlet' Jun 07, 2024 pm 03:44 PM

Counting sounds simple, but in practice it is very difficult. Imagine you are transported to a pristine rainforest to conduct a wildlife census. Whenever you see an animal, take a photo. Digital cameras only record the total number of animals tracked, but you are interested in the number of unique animals, but there is no statistics. So what's the best way to access this unique animal population? At this point, you must be saying, start counting now and finally compare each new species from the photo to the list. However, this common counting method is sometimes not suitable for information amounts up to billions of entries. Computer scientists from the Indian Statistical Institute, UNL, and the National University of Singapore have proposed a new algorithm - CVM. It can approximate the calculation of different items in a long list.

News recommendation algorithm based on global graph enhancement News recommendation algorithm based on global graph enhancement Apr 08, 2024 pm 09:16 PM

Author | Reviewed by Wang Hao | Chonglou News App is an important way for people to obtain information sources in their daily lives. Around 2010, popular foreign news apps included Zite and Flipboard, while popular domestic news apps were mainly the four major portals. With the popularity of new era news recommendation products represented by Toutiao, news apps have entered a new era. As for technology companies, no matter which one they are, as long as they master the sophisticated news recommendation algorithm technology, they will basically have the initiative and voice at the technical level. Today, let’s take a look at a RecSys2023 Best Long Paper Nomination Award paper—GoingBeyondLocal:GlobalGraph-EnhancedP

See all articles