sphinx 源码阅读之数据结构与算法
前言 源码在 sphinx 官网上就可以下载到. 起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。 于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取
前言
源码在 sphinx 官网上就可以下载到.
起初我下载的是最新版本,结果由于代码大约有 10W 行,我看了快 1W 行后发现这样看也不是个办法。
于是我想着生成一个项目关系图来阅读代码,但是我这电脑只有windows, 网上介绍的大多都是 linux 上的,于是我只好取消这个念头。
后来,我想我看sphinx源码主要是先弄明白 sphinx 的工作原理,而工作原理应该一直都是保持不变的,于是我就去下载第一个版本。
第一个版本果然给力,只有 1W 行,于是我就开始高高兴兴的开始从 main 函数开始看源代码了。
看了不就发现 sphinx 用了很多数据结构,而且是自己等装好的,还是先把这些数据结构弄明白了比较好。
于是就有了这篇文章。
为了方便读者阅读,这些数据结构和算法就从简单的慢慢罗列出来。
大家可以看右面的目录,然后去看自己感兴趣的数据结构或算法对应的小节。
如果对那个小节有疑问,可以随时留言。
两个数的最值
sphinx 把最值封装成了一个宏。
#define Min(a,b) ((a)<(b)?(a):(b)) #define Max(a,b) ((a)>(b)?(a):(b))
交换两个数
为了这个通用,使用了基本的模板函数。
而交换则使用第三个缓存变量来实现这个功能。
template<typename T> inline void Swap(T & v1, T & v2) { T temp = v1; v1 = v2; v2 = temp; }
向量vector
这个 vector 实现的功能很简单,基本的 insert,remove,get, set 等操作。
只是附加了一个排序功能。
具体实现方式这里就不多说了,这些都是一个类基本的操作,都很容易实现(需要谁需要这个vector的实现讲解,可以留言)。
template<typename T, int INITIAL_LIMIT = 1024> class CSphVector { public: CSphVector(); //初始化向量 ~CSphVector(); //回收向量 T & Add(); //增加一个元素,返回这个元素的引用 void Add(const T & tValue);//增加一个元素 T & Last();//得到最后一个元素 void Remove(int iIndex);//删除指定位置的元素 void Grow(int iNewLimit);//扩大缓存的大小,两倍两倍的增长 void Resize(int iNewLength);// 原先设置数组的大小 void Reset();// 重置数组 int GetLength();//得到数组的长度 void Sort(int iStart = 0, int iEnd = -1);// 正常排序 void RSort(int iStart = 0, int iEnd = -1);// 逆序 const T & operator [](int iIndex) const;// 读指定位置的值 T & operator [](int iIndex);// 设置指定位置的值 private: int m_iLength;//数组大小 int m_iLimit;//数组缓存大小 T * m_pData;//数组 };
string 类实现
这次 sphinx 自己实现的 string 类的功能就比较多了。
这里我罗列出一些比较简单的功能。
struct CSphString{ CSphString (); //构造 CSphString ( const char * sString ); CSphString ( const CSphString & rhs ); CSphString ( const char * sValue, int iLen ); ~CSphString (); //析构 const char * cstr () const; //得到字符串 const char * scstr() const;//得到字符串,默认未空串 inline bool operator == ( const char * t ) const; //判断两个串是否相等 inline bool operator == ( const CSphString & t ) const; inline bool operator != ( const CSphString & t ) const; bool operator != ( const char * t ) const; const CSphString & operator = ( const CSphString & rhs ); CSphString SubString ( int iStart, int iCount ) const; bool IsEmpty () const; CSphString & ToLower (); CSphString & ToUpper (); int Length () const; bool operator < ( const CSphString & b ); };
IsAlpha
判断一个字符是不是自己想要的字符。
inline int sphIsAlpha ( int c ){ return ( c>='0' && c<='9' ) || ( c>='a' && c<='z' ) || ( c>='A' && c<='Z' ) || c=='-' || c=='_'; }
IsSpace
判断一个字符是不是空白
inline bool sphIsSpace ( int iCode ){ return iCode==' ' || iCode=='\t' || iCode=='\n' || iCode=='\r'; }
字符串trim
字符串 trim 这个功能很常用,取出前边和后边的空白。
static char * ltrim ( char * sLine ){ while ( *sLine && isspace(*sLine) ) sLine++; return sLine; } static char * rtrim ( char * sLine ){ char * p = sLine + strlen(sLine) - 1; while ( p>=sLine && isspace(*p) ) p--; p[1] = '\0'; return sLine; } static char * trim ( char * sLine ){ return ltrim ( rtrim ( sLine ) ); }
切割字符串
切割字符串也是很常用的函数。
一般需要指定分隔符,默认分隔符是空白。
具体的实现代码这里就不展示了。
void sphSplit ( CSphVector<CSphString> & dOut, const char * sIn, const char * sBounds ){ if ( !sIn )return; const char * p = (char*)sIn; while ( *p ){ // skip until the first non-boundary character const char * sNext = p; while ( *p && !strchr ( sBounds, *p ) )p++; // add the token, skip the char dOut.Add().SetBinary ( sNext, p-sNext ); p++; } }
正则匹配
正则表达式大家都用过吧,这次 sphinx 实现了一个简单的正则表达式检验函数。
主要用于检验一个字符串是否符合指定的格式。
bool sphWildcardMatch ( const char * sString, const char * sPattern ){ if ( !sString || !sPattern )return false; const char * s = sString; const char * p = sPattern; while ( *s ){ switch ( *p ){ case '\\': // escaped char, strict match the next one literally p++; if ( *s++!=*p++ )return false; break; case '?': // match any character s++; p++; break; case '%': // gotta match either 0 or 1 characters // well, lets look ahead and see what we need to match next p++; // just a shortcut, %* can be folded to just * if ( *p=='*' )break; // plain char after a hash? check the non-ambiguous cases if ( !sphIsWild(*p) ){ if ( s[0]!=*p ){ // hash does not match 0 chars // check if we can match 1 char, or it's a no-match if ( s[1]!=*p )return false; s++; break; } else{ // hash matches 0 chars // check if we could ambiguously match 1 char too, though if ( s[1]!=*p )break; // well, fall through to "scan both options" route } } // could not decide yet // so just recurse both options if ( sphWildcardMatch ( s, p ) )return true; if ( sphWildcardMatch ( s+1, p ) )return true; return false; case '*': // skip all the extra stars and question marks for ( p++; *p=='*' || *p=='?'; p++ ) if ( *p=='?' ){ s++; if ( !*s )return p[1]=='\0'; } // short-circuit trailing star if ( !*p )return true; // so our wildcard expects a real character // scan forward for its occurrences and recurse for ( ;; ){ if ( !*s )return false; if ( *s==*p && sphWildcardMatch ( s+1, p+1 ) )return true; s++; } break; default: // default case, strict match if ( *s++!=*p++ )return false; break; } } // string done // pattern should be either done too, or a trailing star, or a trailing hash return p[0]=='\0'|| ( p[0]=='*' && p[1]=='\0' )|| ( p[0]=='%' && p[1]=='\0' ); }
日志系统
做项目的时候经常会遇到一些打日志的库,其实这个功能很简单。
基本原理都是使用和 printf 类似的方法: 变参。
static void StdoutLogger ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){ switch ( eLevel ){ case SPH_LOG_FATAL: fprintf ( stdout, "FATAL: " ); break; case SPH_LOG_WARNING: fprintf ( stdout, "WARNING: " ); break; case SPH_LOG_INFO: fprintf ( stdout, "WARNING: " ); break; case SPH_LOG_DEBUG: fprintf ( stdout, "DEBUG: " ); break; } vfprintf ( stdout, sFmt, ap ); fprintf ( stdout, "\n" ); } static SphLogger_fn g_pLogger = &StdoutLogger; inline void Log ( ESphLogLevel eLevel, const char * sFmt, va_list ap ){ if ( !g_pLogger ) return; ( *g_pLogger ) ( eLevel, sFmt, ap ); } void sphWarning ( const char * sFmt, ... ){ va_list ap; va_start ( ap, sFmt ); Log ( SPH_LOG_WARNING, sFmt, ap ); va_end ( ap ); } void sphInfo ( const char * sFmt, ... ); void sphLogFatal ( const char * sFmt, ... ); void sphLogDebug ( const char * sFmt, ... );
变参的实现
上面的日志系统,最后还是调用了 vfprintf 函数, 没有让我们看到变参到底怎么实现的。
但是 sphinx 自己实现了一个 sphVSprintf 函数,和 vfprintf 类似,我不明白那个日志系统为什么不用自己的这个输出函数。
由于是对字符串分析,可以理解为一个简单的自动机。
遇到什么字符,期望下个字符是什么。
这里就不多说这个自动机了。
static int sphVSprintf ( char * pOutput, const char * sFmt, va_list ap ){ enum eStates { SNORMAL, SPERCENT, SHAVEFILL, SINWIDTH, SINPREC }; eStates state = SNORMAL; int iPrec = 0; int iWidth = 0; char cFill = ' '; const char * pBegin = pOutput; bool bHeadingSpace = true; char c; while ( ( c = *sFmt++ )!=0 ){ // handle percent if ( c=='%' ){ if ( state==SNORMAL ){ state = SPERCENT; iPrec = 0; iWidth = 0; cFill = ' '; } else{ state = SNORMAL; *pOutput++ = c; } continue; } // handle regular chars if ( state==SNORMAL ){ *pOutput++ = c; continue; } // handle modifiers switch ( c ){ case '0': if ( state==SPERCENT ){ cFill = '0'; state = SHAVEFILL; break; } case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if ( state==SPERCENT || state==SHAVEFILL ) { state = SINWIDTH; iWidth = c - '0'; } else if ( state==SINWIDTH ) iWidth = iWidth * 10 + c - '0'; else if ( state==SINPREC ) iPrec = iPrec * 10 + c - '0'; break; case '-': if ( state==SPERCENT ) bHeadingSpace = false; else state = SNORMAL; // FIXME? means that bad/unhandled syntax with dash will be just ignored break; case '.': state = SINPREC; iPrec = 0; break; case 's': // string { const char * pValue = va_arg ( ap, const char * ); if ( !pValue ) pValue = "(null)"; int iValue = strlen ( pValue ); if ( iWidth && bHeadingSpace ) while ( iValue < iWidth-- ) *pOutput++ = ' '; if ( iPrec && iPrec < iValue ) while ( iPrec-- ) *pOutput++ = *pValue++; else while ( *pValue ) *pOutput++ = *pValue++; if ( iWidth && !bHeadingSpace ) while ( iValue < iWidth-- ) *pOutput++ = ' '; state = SNORMAL; break; } case 'p': // pointer { void * pValue = va_arg ( ap, void * ); uint64_t uValue = uint64_t ( pValue ); UItoA ( &pOutput, uValue, 16, iWidth, iPrec, cFill ); state = SNORMAL; break; } case 'x': // hex integer case 'd': // decimal integer { DWORD uValue = va_arg ( ap, DWORD ); UItoA ( &pOutput, uValue, ( c=='x' ) ? 16 : 10, iWidth, iPrec, cFill ); state = SNORMAL; break; } case 'l': // decimal int64 { int64_t iValue = va_arg ( ap, int64_t ); UItoA ( &pOutput, iValue, 10, iWidth, iPrec, cFill ); state = SNORMAL; break; } default: state = SNORMAL; *pOutput++ = c; } } // final zero to EOL *pOutput++ = '\n'; return pOutput - pBegin; }
二进制1的个数
之前我曾写过一篇文章详解二进制数中1的个数,大家可以看看。
inline int sphBitCount ( DWORD n ){ register DWORD tmp; tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111); return ( (tmp + (tmp >> 3) ) & 030707070707) % 63; }
整数二进制的位数
/// how much bits do we need for given int inline int sphLog2 ( uint64_t uValue ) { #if USE_WINDOWS DWORD uRes; if ( BitScanReverse ( &uRes, (DWORD)( uValue>>32 ) ) ) return 33+uRes; BitScanReverse ( &uRes, DWORD(uValue) ); return 1+uRes; #elif __GNUC__ || __clang__ if ( !uValue ) return 0; return 64 - __builtin_clzl(uValue); #else int iBits = 0; while ( uValue ) { uValue >>= 1; iBits++; } return iBits; #endif }
模板 堆排序
这个堆排序写的太奇葩了,哎,不能说什么了。
/// generic accessor template < typename T > struct SphAccessor_T{ T & Key ( T * a ) const; //得到指针的值 void CopyKey ( T * pMed, T * pVal ) const; void Swap ( T * a, T * b ) const; T * Add ( T * p, int i ) const;//第i个位置的指针 int Sub ( T * b, T * a ) const;//指针偏移量 }; /// heap sort helper // 自底向上进行堆排序 //pData 带排序数组 //iStart 开始位置 //iEnd 结束位置 //COMP 比较函数 //ACC 访问指针的类 template < typename T, typename U, typename V > void sphSiftDown ( T * pData, int iStart, int iEnd, U COMP, V ACC ){ for ( ;; ){ int iChild = iStart*2+1; if ( iChild>iEnd )return; int iChild1 = iChild+1; if ( iChild1<=iEnd && COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iChild1 ) ) ) ) iChild = iChild1; if ( COMP.IsLess ( ACC.Key ( ACC.Add ( pData, iChild ) ), ACC.Key ( ACC.Add ( pData, iStart ) ) ) ) return; ACC.Swap ( ACC.Add ( pData, iChild ), ACC.Add ( pData, iStart ) ); iStart = iChild; } } /// heap sort //奇葩的是先求出最大堆,然后反转,还边反转边维护堆。 //最终是个最小堆。 template < typename T, typename U, typename V > void sphHeapSort ( T * pData, int iCount, U COMP, V ACC ){ if ( !pData || iCount<=1 ) return; // build a max-heap, so that the largest element is root for ( int iStart=( iCount-2 )>>1; iStart>=0; iStart-- ) sphSiftDown ( pData, iStart, iCount-1, COMP, ACC ); // now keep popping root into the end of array for ( int iEnd=iCount-1; iEnd>0; ){ ACC.Swap ( pData, ACC.Add ( pData, iEnd ) ); sphSiftDown ( pData, 0, --iEnd, COMP, ACC ); } }
快速排序
sphinx 的快速排序也很奇葩。
一般的快速排序是递归,sphinx使用栈模拟递归。
这样栈的大小大概就是 log(n) 了。
而且栈为空的时候共有 log(n) 次。
当数据特殊的时候,快排会退化为 n^2 的复杂度,这个时候,栈为空的几率变大了。
于是 sphinx 加了个修复, 当栈为空的次数大于 2.5 * log(n), 就是用上面那个奇葩的堆排序。
不过这个优化作用不大。
另外这个快排加了一个小优化:当需要排序的数量小于32时,使用插入排序。
template < typename T, typename U, typename V > void sphSort ( T * pData, int iCount, U COMP, V ACC ){ if ( iCount<2 )return; typedef T * P; // st0 and st1 are stacks with left and right bounds of array-part. // They allow us to avoid recursion in quicksort implementation. P st0[32], st1[32], a, b, i, j; typename V::MEDIAN_TYPE x; int k; const int SMALL_THRESH = 32; int iDepthLimit = sphLog2 ( iCount ); iDepthLimit = ( ( iDepthLimit<<2 ) + iDepthLimit ) >> 1; // x2.5 k = 1; st0[0] = pData; st1[0] = ACC.Add ( pData, iCount-1 ); while ( k ){ k--; i = a = st0[k]; j = b = st1[k]; // if quicksort fails on this data; switch to heapsort if ( !k ){ if ( !--iDepthLimit ){ sphHeapSort ( a, ACC.Sub ( b, a )+1, COMP, ACC ); return; } } // for tiny arrays, switch to insertion sort int iLen = ACC.Sub ( b, a ); if ( iLen<=SMALL_THRESH ){ for ( i=ACC.Add ( a, 1 ); i<=b; i=ACC.Add ( i, 1 ) ){ for ( j=i; j>a; ){ P j1 = ACC.Add ( j, -1 ); if ( COMP.IsLess ( ACC.Key(j1), ACC.Key(j) ) ) break; ACC.Swap ( j, j1 ); j = j1; } } continue; } // ATTENTION! This copy can lead to memleaks if your CopyKey // copies something which is not freed by objects destructor. ACC.CopyKey ( &x, ACC.Add ( a, iLen/2 ) ); while ( a<b ){ while ( i<=j ){ while ( COMP.IsLess ( ACC.Key(i), x ) ) i = ACC.Add ( i, 1 ); while ( COMP.IsLess ( x, ACC.Key(j) ) ) j = ACC.Add ( j, -1 ); if ( i<=j ){ ACC.Swap ( i, j ); i = ACC.Add ( i, 1 ); j = ACC.Add ( j, -1 ); } } // Not so obvious optimization. We put smaller array-parts // to the top of stack. That reduces peak stack size. if ( ACC.Sub ( j, a )>=ACC.Sub ( b, i ) ){ if ( a<j ) { st0[k] = a; st1[k] = j; k++; } a = i; } else{ if ( i<b ) { st0[k] = i; st1[k] = b; k++; } b = j; } } } }
二分查找
sphinx 的这个二分查找没有问题,但是和我们平常的二分查找还是有点不同的。
它的左右边界都是开放的,即(a,b).
/// generic binary search template < typename T, typename U, typename PRED > T * sphBinarySearch ( T * pStart, T * pEnd, const PRED & tPred, U tRef ){ if ( tPred(*pStart)==tRef )return pStart; if ( tPred(*pEnd)==tRef )return pEnd; while ( pEnd-pStart>1 ){ if ( tRef<tPred(*pStart) || tPred(*pEnd)<tRef )break; T * pMid = pStart + (pEnd-pStart)/2; if ( tRef==tPred(*pMid) )return pMid; if ( tRef<tPred(*pMid) )pEnd = pMid; else pStart = pMid; } return NULL; }
数组去重
要想去重,首先需要排序,所以这里假设容器是已经排完序的了。
然后假设 iDst 的上一个就是目前比较的值。
如果和上一个相等,则iSrc后移。
如果和上一个不相等,则找到一个新的值,将iDst位置置为新值,个数加1即可。
/// generic uniq template < typename T, typename T_COUNTER > T_COUNTER sphUniq ( T * pData, T_COUNTER iCount ){ if ( !iCount )return 0; T_COUNTER iSrc = 1, iDst = 1; while ( iSrc<iCount ){ if ( pData[iDst-1]==pData[iSrc] )iSrc++; else pData[iDst++] = pData[iSrc++]; } return iDst; }
本文出自:http://tiankonguse.github.io, 原文地址:http://github.tiankonguse.com//blog/2014/11/24/sphinx-struct-alg/, 感谢原作者分享。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Common challenges faced by machine learning algorithms in C++ include memory management, multi-threading, performance optimization, and maintainability. Solutions include using smart pointers, modern threading libraries, SIMD instructions and third-party libraries, as well as following coding style guidelines and using automation tools. Practical cases show how to use the Eigen library to implement linear regression algorithms, effectively manage memory and use high-performance matrix operations.

When using complex data structures in Java, Comparator is used to provide a flexible comparison mechanism. Specific steps include: defining the comparator class, rewriting the compare method to define the comparison logic. Create a comparator instance. Use the Collections.sort method, passing in the collection and comparator instances.

01 Outlook Summary Currently, it is difficult to achieve an appropriate balance between detection efficiency and detection results. We have developed an enhanced YOLOv5 algorithm for target detection in high-resolution optical remote sensing images, using multi-layer feature pyramids, multi-detection head strategies and hybrid attention modules to improve the effect of the target detection network in optical remote sensing images. According to the SIMD data set, the mAP of the new algorithm is 2.2% better than YOLOv5 and 8.48% better than YOLOX, achieving a better balance between detection results and speed. 02 Background & Motivation With the rapid development of remote sensing technology, high-resolution optical remote sensing images have been used to describe many objects on the earth’s surface, including aircraft, cars, buildings, etc. Object detection in the interpretation of remote sensing images

1. Background of the Construction of 58 Portraits Platform First of all, I would like to share with you the background of the construction of the 58 Portrait Platform. 1. The traditional thinking of the traditional profiling platform is no longer enough. Building a user profiling platform relies on data warehouse modeling capabilities to integrate data from multiple business lines to build accurate user portraits; it also requires data mining to understand user behavior, interests and needs, and provide algorithms. side capabilities; finally, it also needs to have data platform capabilities to efficiently store, query and share user profile data and provide profile services. The main difference between a self-built business profiling platform and a middle-office profiling platform is that the self-built profiling platform serves a single business line and can be customized on demand; the mid-office platform serves multiple business lines, has complex modeling, and provides more general capabilities. 2.58 User portraits of the background of Zhongtai portrait construction

Data structures and algorithms are the basis of Java development. This article deeply explores the key data structures (such as arrays, linked lists, trees, etc.) and algorithms (such as sorting, search, graph algorithms, etc.) in Java. These structures are illustrated through practical examples, including using arrays to store scores, linked lists to manage shopping lists, stacks to implement recursion, queues to synchronize threads, and trees and hash tables for fast search and authentication. Understanding these concepts allows you to write efficient and maintainable Java code.

AVL tree is a balanced binary search tree that ensures fast and efficient data operations. To achieve balance, it performs left- and right-turn operations, adjusting subtrees that violate balance. AVL trees utilize height balancing to ensure that the height of the tree is always small relative to the number of nodes, thereby achieving logarithmic time complexity (O(logn)) search operations and maintaining the efficiency of the data structure even on large data sets.

Counting sounds simple, but in practice it is very difficult. Imagine you are transported to a pristine rainforest to conduct a wildlife census. Whenever you see an animal, take a photo. Digital cameras only record the total number of animals tracked, but you are interested in the number of unique animals, but there is no statistics. So what's the best way to access this unique animal population? At this point, you must be saying, start counting now and finally compare each new species from the photo to the list. However, this common counting method is sometimes not suitable for information amounts up to billions of entries. Computer scientists from the Indian Statistical Institute, UNL, and the National University of Singapore have proposed a new algorithm - CVM. It can approximate the calculation of different items in a long list.

Author | Reviewed by Wang Hao | Chonglou News App is an important way for people to obtain information sources in their daily lives. Around 2010, popular foreign news apps included Zite and Flipboard, while popular domestic news apps were mainly the four major portals. With the popularity of new era news recommendation products represented by Toutiao, news apps have entered a new era. As for technology companies, no matter which one they are, as long as they master the sophisticated news recommendation algorithm technology, they will basically have the initiative and voice at the technical level. Today, let’s take a look at a RecSys2023 Best Long Paper Nomination Award paper—GoingBeyondLocal:GlobalGraph-EnhancedP
