使用Sqoop将MySQL数据导入到Hadoop
Sqoop的安装也很简单。 完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下):
Hadoop的安装配置这里就不讲了。
Sqoop的安装也很简单。
Sqoop的安装与使用
完成sqoop的安装后,可以这样测试是否可以连接到mysql(注意:mysql的jar包要放到 SQOOP_HOME/lib 下):
sqoop list-databases --connect jdbc:mysql://192.168.1.109:3306/ --username root --password 19891231
结果如下
即说明sqoop已经可以正常使用了。
CentOS安装和配置Hadoop2.2.0
Ubuntu 13.04上搭建Hadoop环境
Ubuntu 12.10 +Hadoop 1.2.1版本集群配置
Ubuntu上搭建Hadoop环境(单机模式+伪分布模式)
Ubuntu下Hadoop环境的配置
单机版搭建Hadoop环境图文教程详解
搭建Hadoop环境(在Winodws环境下用虚拟机虚拟两个Ubuntu系统进行搭建)
下面,要将mysql中的数据导入到hadoop中。
我准备的是一个300万条数据的身份证数据表:
先启动hive(使用命令行:hive 即可启动)
然后使用sqoop导入数据到hive:
sqoop import --connect jdbc:mysql://192.168.1.109:3306/hadoop --username root --password 19891231 --table test_sfz --hive-import
sqoop 会启动job来完成导入工作。
完成导入用了2分20秒,,还是不错的。
在hive中可以看到刚刚导入的数据表:
我们来一句sql测试一下数据:
select * from test_sfz where id
可以看到,hive完成这个任务用了将近25秒,确实是挺慢的(在mysql中几乎是不费时间),但是要考虑到hive是创建了job在hadoop中跑,时间当然多。
接下来,我们会对这些数据进行复杂查询的测试:
我机子的配置如下:
hadoop 是运行在虚拟机上的伪分布式,虚拟机OS是ubuntu12.04 64位,配置如下:
更多详情见请继续阅读下一页的精彩内容:

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

Article discusses securing MySQL against SQL injection and brute-force attacks using prepared statements, input validation, and strong password policies.(159 characters)
