MySQL数据库InnoDB存储引擎在线加字段实现原理详解
腾讯互娱内部维护了一个MySQL分支,基于官方5.5.24,实现了类似于Oracle 11g的快速加字段功能,这个分支我们内部称为TMySQL。该功
腾讯互娱内部维护了一个MySQL分支,基于官方5.5.24,实现了类似于Oracle 11g的快速加字段功能,这个分支我们内部称为TMySQL。该功能通过扩展存储格式来实现,原理类似于Oracle 11g,以下介绍下其实现原理。
1. GCS行格式
需要在innodb中实现类似oracle的快速加字段功能,仅仅基于原来的行格式是不行的,必须对其进行扩展。为了保证原MySQL和innodb的兼容性,不改变原存储格式的行为,在线加字段功能是通过新增一种innodb行格式GCS(Game Cloud Storage)来实现,从而避免对其他格式造成影响。
虽然说是新增格式,但该格式与原默认的compact是基本一样的,只是新增了关键的Field Count(字段数)控制信息。
下面先回顾下compact行格式
compact聚集索引记录的格式由下图所示,由记录头和记录内容组成。
记录头记录了解析字段的关键信息,其结构下图所示。
Record Extra Bytes:是固定的5字节,表示记录的额外信息。
Nullable Bitmap:记录可空位图,,使用1个bit来表示一个可空字段是否为NULL。
non-NULL Variable-Length Array:非空变长字段数组,表示非空变长字段(如varchar、varbinary)在该行的长度。
关于Compact格式的详细介绍可以参考文章。
compact格式有很重要的两个特点:
字段的定义顺序与存储顺序基本一致(主键除外)
字段为NULL不占存储空间,只需通过Nullable Bitmap记录。
基于以上特点,实现快速加字段功能GCS格式只需在记录头添加Field Count(字段数),来表示当前记录的字段数,占用1~2字节(若大于127,则使用2字节)。
那么,解析GCS记录的关键逻辑就变为:
假设某GCS记录的Field count记录为x,表字段数为y,那么x
如果x == y或非GCS格式,按原来compact方式解析
如果x mysql> create table t1(c1 int, c2 int);
Query OK, 0 rows affected (0.00 sec)
mysql> show table status like 't1'G
*************************** 1. row ***************************
Name: t1
Engine: InnoDB
Version: 10
Row_format: Gcs
Rows: 0
Avg_row_length: 0
Data_length: 16384
Max_data_length: 0
Index_length: 0
Data_free: 0
Auto_increment: NULL
Create_time: 2013-09-10 11:44:21
Update_time: NULL
Check_time: NULL
Collation: utf8_general_ci
Checksum: NULL
Create_options:
Comment:
1 row in set (0.00 sec)
# 插入大量数据
mysql> insert into t1 values(1,1);
Query OK, 1 row affected (0.00 sec)
# 快速加字段
mysql> alter table t1 add column d1 int not null default 0, add column d2 int;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
mysql> select * from t1 limit 1;
+------+------+----+------+
| c1 | c2 | d1 | d2 |
+------+------+----+------+
|1 |1 | 0 | NULL |
+------+------+----+------+
1 row in set (0.00 sec)
--------------------------------------分割线 --------------------------------------
Ubuntu 14.04下安装MySQL
《MySQL权威指南(原书第2版)》清晰中文扫描版 PDF
Ubuntu 14.04 LTS 安装 LNMP Nginx\PHP5 (PHP-FPM)\MySQL
Ubuntu 14.04下搭建MySQL主从服务器
Ubuntu 12.04 LTS 构建高可用分布式 MySQL 集群
Ubuntu 12.04下源代码安装MySQL5.6以及Python-MySQLdb
MySQL-5.5.38通用二进制安装
--------------------------------------分割线 --------------------------------------
2. 兼容性
仅仅新增GCS存储格式,必定导致原来数据的不兼容(每行增加Field Count),只能通过重导数据或alter table来使其支持在线加字段功能。
# compact格式转换为GCS格式
mysql> alter table t_compact row_format=gcs;
如果数据量越大,上述语句所花时间就会越长,这样对升级和使用都带来困难。
为了解决这个问题,GCS格式实现了对compact格式的全面兼容。
在innodb实现中,compact格式记录头的Record Extra Bytes首字节最高位和次高位是保留的,总是为0。因此,GCS记录占用了其中的最高bit,若为1表示使用GCS格式,记录中会包含Field count信息,这里称该bit为控制位。
然而GCS行格式新增的Field Count仅仅是为了表示记录的字段数,如果表不执行加字段操作,该部分其实是不起作用的(记录字段数恒等于表字段数)。换句话说,如果GCS表不执行快速加字段操作,记录其实并不需要存储Field Count信息。
因此,当表第一次快速加字段前,GCS记录可以与compact完全相同,即控制位为0;当第一次快速加字段时,可将加字段前的字段数存储在扩展的数据字典中,用来解析控制位为0的GCS记录(充当记录上的field count信息);新插入或修改的记录,则按照第一节介绍的存储格式进行构建。
最后,这个设计中的GCS记录在第一次快速加字段前可以跟Compact格式是完全一致的。这样做,有两个好处:
第一次在线加字段前,减少每条GCS记录Field Count 1~2字节的存储消耗
可以支持Compact表快速转换为GCS表,实现快速升级
由于存储格式完全兼容,不管原来的compact表数据量有多少,仅需执行以下命令,修改表的元数据信息,就能将格式快速转换为GCS,从而获得快速加字段功能。
mysql> create table t_compact(c1 int, c2 int) row_format=compact;
Query OK, 0 rows affected (0.00 sec)
mysql> insert into t_compact values(1,1);
Query OK, 1 row affected (0.00 sec)
# compact格式非onlie操作,需要拷贝数据
mysql> alter table t_compact add column d1 int;
Query OK, 1 row affected (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0
# online操作,只需修改元数据,不需拷贝数据
mysql> alter table t_compact row_format = gcs;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
# online操作
mysql> alter table t_compact add column d2 int not null default 0;
Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0
这样,TMySQL可实现基于5.5的覆盖升级,对于compact表只需执行alter table row_format = gcs命令就能快速支持在线加字段功能,大大降低升级成本,并且实现加字段前没有存储空间的额外消耗!
3 DML操作
存储格式得以支持,相应的DML操作逻辑需要修改。
select:按照GCS格式进行解析
insert:根据当前表的字段数构造记录中field count和标记控制位
delete:不变
update:原地更新不变;非原地更新走delete+insert,会更新为新的field count
更多详情见请继续阅读下一页的精彩内容:

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

InnoDB is a storage engine that stores data in tables on disk, so our data will still exist even after shutdown and restart. The actual process of processing data occurs in memory, so the data in the disk needs to be loaded into the memory. If it is processing a write or modification request, the contents in the memory also need to be refreshed to the disk. And we know that the speed of reading and writing to disk is very slow, which is several orders of magnitude different from reading and writing in memory. So when we want to get certain records from the table, does the InnoDB storage engine need to read the records from the disk one by one? The method adopted by InnoDB is to divide the data into several pages, and use pages as the basic unit of interaction between disk and memory. The size of a page in InnoDB is generally 16

InnoDB is one of the database engines of MySQL. It is now the default storage engine of MySQL and one of the standards for binary releases by MySQL AB. InnoDB adopts a dual-track authorization system, one is GPL authorization and the other is proprietary software authorization. InnoDB is the preferred engine for transactional databases and supports transaction security tables (ACID); InnoDB supports row-level locks, which can support concurrency to the greatest extent. Row-level locks are implemented by the storage engine layer.

1. Mysql transaction isolation level These four isolation levels, when there are multiple transaction concurrency conflicts, some problems of dirty reading, non-repeatable reading, and phantom reading may occur, and innoDB solves them in the repeatable read isolation level mode. A problem of phantom reading, 2. What is phantom reading? Phantom reading means that in the same transaction, the results obtained when querying the same range twice before and after are inconsistent as shown in the figure. In the first transaction, we execute a range query. At this time, there is only one piece of data that meets the conditions. In the second transaction, it inserts a row of data and submits it. When the first transaction queries again, the result obtained is one more than the result of the first query. Data, note that the first and second queries of the first transaction are both in the same

1. Roll back and reinstall mysql. In order to avoid the trouble of importing this data from other places, first make a backup of the database file of the current library (/var/lib/mysql/location). Next, I uninstalled the Perconaserver 5.7 package, reinstalled the original 5.1.71 package, started the mysql service, and it prompted Unknown/unsupportedtabletype:innodb and could not start normally. 11050912:04:27InnoDB:Initializingbufferpool,size=384.0M11050912:04:27InnoDB:Complete

MySQL storage engine selection comparison: InnoDB, MyISAM and Memory performance index evaluation Introduction: In the MySQL database, the choice of storage engine plays a vital role in system performance and data integrity. MySQL provides a variety of storage engines, the most commonly used engines include InnoDB, MyISAM and Memory. This article will evaluate the performance indicators of these three storage engines and compare them through code examples. 1. InnoDB engine InnoDB is My

MySQL is a widely used database management system, and different storage engines have different impacts on database performance. MyISAM and InnoDB are the two most commonly used storage engines in MySQL. They have different characteristics and improper use may affect the performance of the database. This article will introduce how to use these two storage engines to optimize MySQL performance. 1. MyISAM storage engine MyISAM is the most commonly used storage engine for MySQL. Its advantages are fast speed and small storage space. MyISA

Tips and strategies to improve the read performance of MySQL storage engine: Comparative analysis of MyISAM and InnoDB Introduction: MySQL is one of the most commonly used open source relational database management systems, mainly used to store and manage large amounts of structured data. In applications, the read performance of the database is often very important, because read operations are the main type of operations in most applications. This article will focus on how to improve the read performance of the MySQL storage engine, focusing on a comparative analysis of MyISAM and InnoDB, two commonly used storage engines.

MySQL storage engine supporting GIS data: Spatial index optimization in InnoDB Abstract: In modern database applications, geographic information system (GIS) data plays an increasingly important role. GIS data processing is complex and dynamic, and traditional relational databases are not good at processing this type of data. However, MySQL provides a storage engine, InnoDB, that can optimize the processing of GIS data. This article will introduce how to use spatial indexes on the InnoDB storage engine to optimize GIS data.
