Home Database Mysql Tutorial Oracle 11g 的服务器结果缓存result_cache_mode

Oracle 11g 的服务器结果缓存result_cache_mode

Jun 07, 2016 pm 04:49 PM

对于经常要查的结果集,返回少量记录,服务器端是可以缓存的,结果集保存在共享池中,如果是绑定变量,绑定变量的值也要一样。

对于经常要查的结果集,返回少量记录,服务器端是可以缓存的,结果集保存在共享池中,如果是绑定变量,绑定变量的值也要一样。
 
SQL> show parameter result_cache
 NAME                                TYPE        VALUE
 ------------------------------------ ----------- ------------------------------
 client_result_cache_lag              big integer 3000
 client_result_cache_size            big integer 0
 result_cache_max_result              integer    5
 result_cache_max_size                big integer 33440K
 result_cache_mode                    string      manual
 result_cache_remote_expiration      integer    0
 --result_cache_max_result 指定任何单个结果集可以使用result_cache_max_size的大小(单位为百分比),默认为5,允许从1到100的值,超过这个限制的结果集会被双色至为无效。
 --result_cache_max_size 指定用来作为结果缓存的共享池内存的大小,如果被设置为0,表示这个特性被禁用。
 
--result_cache_mode 如果设置为MANUAL(这也是默认情况),只有指定hint result_cache的时候才能使用结果缓存;当为force的时候,所有不包含hint no_result_cache的查询语句都会使用结果缓存,查询第二次即生效;当为auto时,在11g下运行同样的SQL第三次,缓存才起作用。
 
--result_cache_remote_expiration 缓存远程对象的有效期(单位为分钟),因为基于远程对象的结果集无法由于远程对象的变更而自动地变为无效,通常默认为0,这意味着基于远程对象的查询结果的缓存是被禁止的。
 
--result_cache_max_result和result_cache_max_size是系统级别的设置,,result_cache_mode和result_cache_remote_expiration可以在会话级别修改。

--------------------------------------------------------------------------------

Linux-6-64下安装Oracle 12C笔记

在CentOS 6.4下安装Oracle 11gR2(x64)

Oracle 11gR2 在VMWare虚拟机中安装步骤

Debian 下 安装 Oracle 11g XE R2

--------------------------------------------------------------------------------
 
SQL> alter system set result_cache_mode=force
 

SQL> SELECT COUNT(1)
  2    FROM GG_DISTRIBUTION W
  3  WHERE W.DATA_AREA LIKE '03' || '%'
  4    AND W.CREATE_DATE > TO_DATE('2013-01-01', 'yyyy-GG-dd');
 已用时间:  00: 00: 22.48
 执行计划
 ----------------------------------------------------------
 Plan hash value: 3923546474
 -------------------------------------------------------------------------------------------------------------
 | Id  | Operation                | Name            | Rows  | Bytes | Cost (%CPU)| Time    | Pstart| Pstop |
 -------------------------------------------------------------------------------------------------------------
 |  0 | SELECT STATEMENT          |                |    1 |    14 |  106K  (1)| 00:24:46 |      |      |
 |  1 |  SORT AGGREGATE          |                |    1 |    14 |            |          |      |      |
 |  2 |  PARTITION RANGE ALL    |                |  2173K|    29M|  106K  (1)| 00:24:46 |    1 |    2 |
 |  3 |    PARTITION LIST ITERATOR|                |  2173K|    29M|  106K  (1)| 00:24:46 |  KEY |  KEY |
 |*  4 |    TABLE ACCESS FULL    | GG_DISTRIBUTION |  2173K|    29M|  106K  (1)| 00:24:46 |    1 |    48 |
 -------------------------------------------------------------------------------------------------------------
 Predicate Information (identified by operation id):
 ---------------------------------------------------
    4 - filter("W"."CREATE_DATE">TO_DATE(' 2013-01-01 00:00:00', 'syyyy-GG-dd hh24:mi:ss') AND
              "W"."DATA_AREA" LIKE '03%')
 统计信息
 ----------------------------------------------------------
          0  recursive calls
          0  db block gets
      280123  consistent gets
      263679  physical reads
          0  redo size
        339  bytes sent via SQL*Net to client
        337  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          1  rows processed
         
 SQL> /
 已用时间:  00: 00: 00.11
 执行计划
 ----------------------------------------------------------
 Plan hash value: 3923546474
 -------------------------------------------------------------------------------------------------------------------------
 | Id  | Operation                  | Name                      | Rows  | Bytes | Cost (%CPU)| Time  | Pstart| Pstop |
 -------------------------------------------------------------------------------------------------------------------------
 |  0 | SELECT STATEMENT          |                            |    1 |    14 |  106K  (1)| 00:24:46 |      |      |
 |  1 |  RESULT CACHE              | 0mr1089p1wxv3919raqyvtwtsv |      |      |            |      |  |      |
 |  2 |  SORT AGGREGATE          |                            |    1 |    14 |            |      |  |      |
 |  3 |    PARTITION RANGE ALL    |                            |  2173K|    29M|  106K  (1)| 00:24:46 |    1 |    2 |
 |  4 |    PARTITION LIST ITERATOR|                            |  2173K|    29M|  106K  (1)| 00:24:46 |  KEY |  KEY |
 |*  5 |      TABLE ACCESS FULL    | GG_DISTRIBUTION            |  2173K|    29M|  106K  (1)| 00:24:46 |    1 |    48 |
 -------------------------------------------------------------------------------------------------------------------------
 Predicate Information (identified by operation id):
 ---------------------------------------------------
    5 - filter("W"."CREATE_DATE">TO_DATE(' 2013-01-01 00:00:00', 'syyyy-GG-dd hh24:mi:ss') AND "W"."DATA_AREA"
              LIKE '03%')
 Result Cache Information (identified by operation id):
 -----------------------------------------------------
    1 - column-count=1; dependencies=(LCAM_TEST.GG_DISTRIBUTION); attributes=(single-row); parameters=(nls);
 统计信息
 ----------------------------------------------------------
          1  recursive calls
          0  db block gets
          0  consistent gets
          0  physical reads
          0  redo size
        339  bytes sent via SQL*Net to client
        337  bytes received via SQL*Net from client
          2  SQL*Net roundtrips to/from client
          0  sorts (memory)
          0  sorts (disk)
          1  rows processed
 

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

How do you alter a table in MySQL using the ALTER TABLE statement? How do you alter a table in MySQL using the ALTER TABLE statement? Mar 19, 2025 pm 03:51 PM

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

When might a full table scan be faster than using an index in MySQL? When might a full table scan be faster than using an index in MySQL? Apr 09, 2025 am 12:05 AM

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Can I install mysql on Windows 7 Can I install mysql on Windows 7 Apr 08, 2025 pm 03:21 PM

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

Difference between clustered index and non-clustered index (secondary index) in InnoDB. Difference between clustered index and non-clustered index (secondary index) in InnoDB. Apr 02, 2025 pm 06:25 PM

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values ​​and pointers to data rows, and is suitable for non-primary key column queries.

What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? Mar 21, 2025 pm 06:28 PM

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

How do you handle large datasets in MySQL? How do you handle large datasets in MySQL? Mar 21, 2025 pm 12:15 PM

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

How do you drop a table in MySQL using the DROP TABLE statement? How do you drop a table in MySQL using the DROP TABLE statement? Mar 19, 2025 pm 03:52 PM

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

See all articles