成功安装 Oracle11G FOR Linux
经过几天的折腾,终于安装成功Oracle11Gr Linux,开始安装了RS4.0下载了Oracle10g的若干版本,要么出现Oracle和Linux不兼容的问题,要么就是
经过几天的折腾,终于安装成功Oracle11G FOR Linux,开始安装了RS4.0下载了Oracle10g的若干版本,要么出现Oracle和Linux不兼容的问题,要么就是找不到inventory目录的问题,要么就是安装过程中不能启动net config的问题,,昨天经过大胆尝试终于成功,下面把自己的经验记录下来以做备忘:
1、下载RS5.0企业版,我是在迅雷里面下载的DVD版,不要忘了找个序列号,我找到一个Red Hat Enterprise Linux (Server including virtualization):
2515dd4e215225dd
2、到Oracle官方网站下载Oracle11G
下面我们就开始安装吧:
1。新建用户组
# /usr/sbin/groupadd oinstall
# /usr/sbin/groupadd dba
2。新建用户并设置密码
# /usr/sbin/useradd -g oinstall -G dba oracle
# passwd oracle
3.设置目录权权限
# chown -R oracle:oinstall /ora10g/app/oracle /ora10b/oradata
# chmod -R 775 /ora10g/app/oracle /ora10b/oradata
4.将下列配置加到 /etc/security/limits.conf 文件中:
soft nproc 2047
hard nproc 16384
soft nofile 1024
hard nofile 65536
增加下列配置到 /etc/pam.d/login 文件中:
session required /lib/security/pam_limits.so
对于单独使用Oracle用户的shell,增加下列脚本到配置文件/etc/profile 中:
if [ $USER = "oracle" ]; then
if [ $SHELL = "/bin/ksh" ]; then
ulimit -p 16384
ulimit -n 65536
else
ulimit -u 16384 -n 65536
fi
fi
设置用户oracle的环境变量
1。以用户oracle登录:
在配置文件.bash_profile文件中增加: umask 022 设置该用户的默认umask
执行$ . ./.bash_profile 配置生效。
2。设置临时文件目录
$ TEMP=/directory
$ TMPDIR=/directory
$ export TEMP TMPDIR
4。设置ORACLE_BASE和ORACLE_SID变量
$ ORACLE_BASE= /ora10g/app/oracle //这是在前面建立的Oracle的主程序目录
$ ORACLE_SID=sales
$ export ORACLE_BASE ORACLE_SID

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
