Oracle BUG invalid julianday
如果ORACLE遇到非法或异常的时间类型数据时,在某些特定的情况下将其自动转换为rsquo;0000-00-00rsquo;而存储下来,不会抛出异
在一次datastage做etl,需要将一个source库的tab1数据导入到目标库tab2,两张表结构相同,发现etl执行报错invalid julian day
如果Oracle遇到非法或异常的时间类型数据时,在某些特定的情况下将其自动转换为’0000-00-00’而存储下来,不会抛出异常或错误提示。
比如在PL/SQL下,正常情况是不允许 年份为0值的:
SQL> select to_date('0000-01-01','yyyy-mm-dd') from dual;
select to_date('0000-01-01','yyyy-mm-dd') from dual
ORA-01841: (full) year must be between -4713 and +9999, and not be 0
但如果使用DATE函数,ORACLE将不会给出错误提示,而自动转换为‘0000-00-00‘:
SQL> select date '0000-01-01' from dual;
DATE'0000-01-01'
----------------
0/0/0000
这时如果使用DATE函数处理后来插入或更新这类日期值时,系统是不会给出错误提示,这在9i和10G下都是同样的处理方式。
还有另外两种情况,在PL/SQL下也会出现这样的问题:
1. 如果日期表达式的结果小于或等于0,结果都为'0000/00/00':
SQL> select to_date('0001-01-01', 'yyyy-mm-dd')-720 from dual;
TO_DATE('0001-01-01','YYYY-MM-
------------------------------
0/0/0000
SQL> select to_date('0001-01-01', 'yyyy-mm-dd')-365 from dual;
TO_DATE('0001-01-01','YYYY-MM-
------------------------------
0/0/0000
2. 对100到1500年之内的所有整百年的日期进行计算,如果结果为2月29的话,结果都为'0000/00/00':
SQL> select date '0099-2-28' +1 from dual;
DATE'0099-2-28'+1
-----------------
3/1/0099
SQL> select date '0100-2-28' +1 from dual;
DATE'0100-2-28'+1
-----------------
0/0/0000
在其它语言的处理上,也有类似的情况。而且在目前所有的ORACLE版本中,都没有对这类的错误修正,,所以在进行日期类型的值做转换和处理时,应该注意其转换后值的合法性和有效性。
后来处理还发现
有问题的日期用函数to_char的话会出现两种值,最后通过这两个值找到了问题数据,将错误日期改掉才解决~
to_char(DISABLE_DATE,'yyyy-MM-dd') = '3593-11-30'
or to_char(CLMDOC_READY_DATE,'yyyy-MM-dd') = '3593-11-30'
or to_char(DEATH_DATE,'yyyy-MM-dd') = '3593-11-30'
or to_char(DIAGNOSE_DATE,'yyyy-MM-dd') = '3593-11-30'
or to_char(DELAY_DATE,'yyyy-MM-dd') = '3593-11-30'
or to_char(FCD,'yyyy-MM-dd') = '3593-11-30'
or to_char(LCD,'yyyy-MM-dd') = '3593-11-30'
or
to_char(DISABLE_DATE,'yyyy-MM-dd') = '0000-00-00'
or to_char(CLMDOC_READY_DATE,'yyyy-MM-dd') = '0000-00-00'
or to_char(DEATH_DATE,'yyyy-MM-dd') = '0000-00-00'
or to_char(DIAGNOSE_DATE,'yyyy-MM-dd') = '0000-00-00'
or to_char(DELAY_DATE,'yyyy-MM-dd') = '0000-00-00'
or to_char(FCD,'yyyy-MM-dd') = '0000-00-00'
or to_char(LCD,'yyyy-MM-dd') = '0000-00-00'
)
;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
