Oracle数据库字典表优化小技巧
字典表一般是比较常用的,可以设置这些表使用keep池。 先分析一下方案中的字典表,以便计算空间,简单起见,所有表都分析一下,调
一、
字典表一般是比较常用的,可以设置这些表使用keep池。
先分析一下方案中的字典表,以便计算空间,简单起见,所有表都分析一下,调用存储过程:
dbms_stats.gather_schema_stats(ownname=>'Schema名称')
计算一下所需的空间:
select sum(blocks)*8 from user_tables where name like 'DICT\_%' escape '\';
注:8是数据块的大小,8k,有的是4k。假定字典表是以DICT_开头的表。
得到所需空间的大小,,单位为k,根据统计结果设置一下keep池的大小。keep池默认是0,不启用。
alter system set db_keep_cache_size=80m;
二、
一般系统里的字典表都是比较稳定的,不常修改的,因此可以设置pctfree为0,可节省空间、提高访问速度。
针对以上两个优化思路,写了个简单的存储过程,仅在测试库上测试了一下,如果数据量巨大、存储空间紧张,请谨慎使用。
CREATE OR REPLACE procedure KeepDictTab is
/******************************************************************************
2012-01-04设置小表的pctfree为0、且使用keep池,提高效率
******************************************************************************/
begin
for rec_tab in (select table_name from user_tables where table_name like 'DICT\_%' escape '\') loop
execute immediate 'alter table ' || rec_tab.table_name ||' pctfree 0 storage (buffer_pool keep)';
execute immediate 'alter table ' || rec_tab.table_name || ' move tablespace tbs2';
--切换表空间,可使用新存储特性保存数据,切换后,重建一下索引,不然移不回来了。
for rec_idx in (select index_name from user_indexes where table_name =rec_tab.table_name) loop
execute immediate 'alter index '||rec_idx.index_name ||' rebuild';
end loop;
--切换回原来的表空间,再重建一下索引
execute immediate 'alter table ' || rec_tab.table_name || ' move tablespace tbs1';
for rec_idx in (select index_name from user_indexes where table_name =rec_tab.table_name) loop
execute immediate 'alter index '||rec_idx.index_name ||' rebuild';
end loop;
--分析表
execute immediate 'analyze table ' || rec_tab.table_name || ' estimate statistics';
end loop;
for rec_idx in (select index_name from user_indexes where table_name like 'DICT\_%' escape '\') loop
--分析相关的索引
execute immediate 'analyze index '||rec_idx.index_name ||' estimate statistics';
end loop;
end KeepDictTab;
/
设置完成后,可以用执行计划看一下,读取的数据块有所减少,COST有所降低、速度有一点点儿变快。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
