PostgreSQL中文学习手册(系统表)
PostgreSQL中文学习手册(系统表) ,该系统表记录了数据表、索引(仍然需要参阅pg_index)、序列、视图、复合类型和一些特殊关系类型
一、pg_class:
该系统表记录了数据表、索引(仍然需要参阅pg_index)、序列、视图、复合类型和一些特殊关系类型的元数据。注意:不是所有字段对所有对象类型都有意义。
名字 类型 引用 描述
relname name 数据类型名字。
relfilenode oid 对象存储在磁盘上的文件名,如果没有则为0。
relpages int4 该数据表或索引所占用的磁盘页面数量,查询规划器会借助该值选择最优路径。
reltuples float4 表中行的数量,该值只是被规划器使用的一个估计值。
relhasindex bool 如果这是一个数据表而且至少有(或者最近有过)一个索引,则为真。它是由CREATE INDEX设置的,但DROP INDEX不会立即将它清除。如果VACUUM发现一个表没有索引,那么它清理 relhasindex。
relisshared bool 如果该表在整个集群中由所有数据库共享,则为真。
relkind char r = 普通表,i = 索引,S = 序列,v = 视图, c = 复合类型,,s = 特殊,t = TOAST表
relnatts int2 数据表中用户字段的数量(除了系统字段以外,如oid)。在pg_attribute里肯定有相同数目的数据行。见pg_attribute.attnum.
relchecks int2 表中检查约束的数量,参阅pg_constraint表。
reltriggers int2 表中触发器的数量;参阅pg_trigger表。
relhasoids bool 如果我们为对象中的每行都生成一个OID,则为真。
relhaspkey bool 如果该表存在主键,则为真。
relhasrules bool 如表有规则就为真;参阅pg_rewrite表。
relhassubclass bool 如果该表有子表,则为真。
relacl aclitem[] 访问权限。
见如下应用示例:
#查看指定表对象testtable的模式
postgres=# SELECT relname,relnamespace,nspname FROM pg_class c,pg_namespace n WHERE relname = 'testtable' AND relnamespace = n.oid;
relname | relnamespace | nspname
-------------+--------------+---------
testtable | 2200 | public
(1 row)
#查看指定表对象testtable的owner(即role)。
postgres=# select relname,rolname from pg_class c,pg_authid au where relname = 'testtable' and relowner = au.oid;
relname | rolname
-------------+----------
testtable | postgres
(1 row)

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
