exp/expdp传输表空间和rman convert实现大数据量快速迁移
exp/expdp传输表空间和rman convert实现大数据量快速迁移,将Oracle数据库中某个用户迁移到另外一个库上,迁移的数据量大小约 12
将Oracle数据库中某个用户迁移到另外一个库上,迁移的数据量大小约 120GB 。如果采用 expdp 导出的话时间会很长,再加上导出的 DMP 文件拷贝和 impdp 导入数据的时间,不能满足要求。
这里采用 RMAN 的 CONVERT 功能和 exp/expdp 的 transport_tablespace 的功能。前者将用户所在的表空间的数据文件从一个数据库所在的系统平台中拷贝到另外一个数据库系统上,后者将表空间对应的 metadata 数据拷贝出来。
测试过程虽然顺利,但最后想到一个问题, rman 中的 catalog 记录的 copy 的文件已经被数据库实例占用的情况下,该记录如何删除掉?
后来想到 rman convert 方法,它将文件系统文件拷贝到 ASM 磁盘组,不在 catalog 中留记录。同时,这个方法免去了文件名称修改的操作,更简洁高效。
使用 convert 可以实现跨平台的数据迁移,这点在环境复杂的项目中非常有用。
首先,介绍一下环境。
源库是 RedHat linux as 5 ,,单数据库实例,文件系统格式保存数据文件,数据库版本为 10.2.0.4 。
目标库是 redhat linux as 5 ,两节点的 RAC , ASM 格式保存数据文件,数据库版本为 10.2.0.4 。
可以使用 SELECT * FROM V$TRANSPORTABLE_PLATFORM; 检查这个版本上的表空间是否支持传输。结果当然是支持的。
其次,了解迁移的表空间和数据对象。
根据 dba_segments 查询到用户使用的哪些表空间,好决定要迁移的表空间。
在表空间确定了以后,如这里是 gtja 。需要再根据表空间的 segment 都是哪些用户,如果不仅仅是要迁移的用户,还要将新的用户也找出来。
在目标库上提前将这些用户创建好。
这是因为我们采用的是表空间传输迁移数据,所以难免会有多的对象被迁移。根据实际情况权衡,决定是清理源头还是全部迁移。
表空间的 segment 的类型需要先分析一下。对于分区表、 IOT 表、 XMLType 对象等等不常见的,要先想想能不能用它迁移,这是第一点。
还有两点:一,目标库和源库的字符集要一致,否则请测试该方案;二、目标库不能有同名的表空间。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

MySQL is an open source relational database management system. 1) Create database and tables: Use the CREATEDATABASE and CREATETABLE commands. 2) Basic operations: INSERT, UPDATE, DELETE and SELECT. 3) Advanced operations: JOIN, subquery and transaction processing. 4) Debugging skills: Check syntax, data type and permissions. 5) Optimization suggestions: Use indexes, avoid SELECT* and use transactions.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
