Oracle spatial 空间数据SQL查询操作相关实例
Oracle spatial 空间数据SQL查询操作相关实例
Oracle spatial 空间数据SQL查询操作相关实例
--select dlbm,dlmc,trim(zldwdm) as zldwdm_1 from gzdt where nvl(zldwdm,'t')='t' or zldwdm='';
update gzdt set ZLDWDM='510113106' where nvl(zldwdm,'t')='t' or zldwdm='';
commit;
delete from gzdt where ZLDWDM like '510113106%'
commit;
//获取空间面的面积
update gzdt set mj=mdsys.sdo_geom.sdo_area(geometry,0.0000000005);
//获取空间线的长度
update xzdw set cd=mdsys.sdo_geom.sdo_length(geometry,0.0000000005);
//删除空间数据 用SQL语句
//sql insert oracle spatial object 耕地
delete from spatial;
insert into spatial(dlbm,geometry)
select dlbm,geometry from v_dltb where dlbm in('011','012','013') ;
commit;
//插入空间数据 用SQL语句
insert into spatial(dlbm,geometry)
select dlbm,geometry from v_dltb where dlbm in('011','012','013') ;
commit;
//创建空间字段索引 oracle spatial table
//======================================
drop index index_spatial_v_gb_gdbhdk_h;
drop index index_spatial_v_jj_xzq_h;
drop index index_spatial_v_tdlygh_ytfq_xz_e;
drop index index_spatial_v_tdlyxz_dltb_h;
drop index index_spatial_v_tdly_nydfddj_k;
create index v_gb_gdbhdk_h_spatial_index on v_gb_gdbhdk_h(geometry) indextype mdsys.spatial_index;
create index v_jj_xzq_h_spatial_index on v_jj_xzq_h(geometry) indextype mdsys.spatial_index;
create index v_tdlygh_ytfq_xz_e_spatial_index on v_tdlygh_ytfq_xz_e(geometry) indextype mdsys.spatial_index;
create index v_tdlyxz_dltb_h_spatial_index on v_tdlyxz_dltb_h(geometry) indextype mdsys.spatial_index;
create index v_tdly_nydfddj_k_spatial_index on v_tdly_nydfddj_k(geometry) indextype mdsys.spatial_index;
//======================================
//创建字段索引
//=======================================
drop index index_fd_v_gb_gdbhdk_h_xzqdm;
drop index index_fd_v_jj_xzq_h_xzqdm;
drop index index_fd_v_tdlygh_ytfq_xz_e_xzqdm;
drop index index_fd_v_tdlyxz_dltb_h_zldwdm;
drop index index_fd_v_tdly_nydfddj_k_xzdm;
create index index_fd_v_gb_gdbhdk_h_xzqdm on v_gb_gdbhdk_h(xzqdm);
create index index_fd_v_jj_xzq_h_xzqdm on v_jj_xzq_h(xzqdm);
create index index_fd_v_tdlygh_ytfq_xz_e_xzqdm on v_tdlygh_ytfq_xz_e(xzqdm);
create index index_fd_v_tdlyxz_dltb_h_zldwdm on v_tdlyxz_dltb_h(zldwdm);
create index index_fd_v_tdly_nydfddj_k_xzdm on v_tdly_nydfddj_k(xzdm);
//=======================================
//读取空间数据字段sql geometry
select DLBM,dlmc,
mdsys.sdo_geom.sdo_area(geometry,0.0000000005) as geo_mj,
sdo_util.getnumelem(geometry) as num_elem,
sdo_util.getVertices(geometry) as Vertices,
sdo_util.GetNumRings(geometry) as Num_Rings,
sdo_util.to_gmlgeometry(geometry) as gmlgeo,
geometry
from v_dltb
//两空间图层相交运算
//任意相交运算mask=anyinteract
delete from gzdt;
insert into gzdt(dlbm,geometry)
select a.dlbm,
SDO_GEOM.SDO_INTERSECTION(a.geometry, b.geometry, 0.0001) as geometry
from v_dltb as a
v_ytfq as b
where sdo_relate(a.geometry,b.geometry,'mask=ANYINTERACT')='TRUE'
//在内部运算mask=inside
delete from gzdt;
insert into gzdt(dlbm,geometry)
select a.dlbm,
SDO_GEOM.SDO_INTERSECTION(a.geometry, b.geometry, 0.0001) as geometry
from v_dltb as a
v_ytfq as b
where sdo_relate(a.geometry,b.geometry,'mask=INSIDE')='TRUE'
//dltb_jbnt叠加分析
select * from v_dltb
where dlbm in('011','012','013') and dldwdm like '510112106%';
//
select d.dlbm,d.dlmc,
d.tbmj,d.tbdlmj,d.xzdwmj,d.lxdwmj,d.tkmj,
mdsys.sdo_geom.sdo_area(d.geometry,0.0000000005) as geo_mj,
sdo_util.getnumelem(d.geometry) as num_elem,
sdo_util.getVertices(d.geometry) as Vertices,
sdo_util.GetNumRings(d.geometry) as Num_Rings,
sdo_util.to_gmlgeometry(d.geometry) as gmlgeo,
SDO_GEOM.SDO_INTERSECTION(d.geometry, y.geometry, 0.0001) as geometry
from v_dltb d,
v_ytfq y
where d.dldwdm like '510112106%' and (d.dlbm in('021') or d.dlbz in('k','K')) and
y.xzqdm like '510112%' and
mdsys.sdo_geom.relate(d.geometry,'INSIDE',y.geometry,0.0001)='INSIDE';
//提取v_gbjj图层有效几何图形数据
select * from v_gbjj
where sdo_geom.validate_geometry_with_context(GEOMETRY,0.0001)='TRUE'
//提取v_gbjj图层无效几何图形数据
select * from v_gbjj
where sdo_geom.validate_geometry_with_context(GEOMETRY,0.0001)'TRUE'
//==the==end==

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
