Oracle存储提纲(stored outline)
oracle存储提纲(stored outline)用来提供稳定的执行计划。从oracle 11g开始,逐渐被sql计划继续取代。下面是存储提纲的具体过
Oracle存储提纲(stored outline)用来提供稳定的执行计划。从oracle 11g开始,逐渐被sql计划继续取代。下面是存储提纲的具体过程,结果在oracle 11g r2版本测试
--创建测试表和索引
create table oln_test as select * from dba_tables;
set autotrace on;
SQL> create index idex_oln on oln_test (TABLE_NAME);
SQL> select OWNER from oln_test where table_name = 'OLN_TEST';
----------------------------------------------------------
Plan hash value: 3038230087
----------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
----------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 34 | 1 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| OLN_TEST | 1 | 34 | 1 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IDEX_OLN | 1 | | 1 (0)| 00:00:01 |
----------------------------------------------------------------------------------------
SQL> select /*+FULL(oln_test)*/ OWNER from oln_test where table_name = 'OLN_TEST';
----------------------------------------------------------
Plan hash value: 1307524366
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 34 | 13 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| OLN_TEST | 1 | 34 | 13 (0)| 00:00:01 |
------------------------------------------------------------------------------
-- 生成outline
-- Create the OUTLINE for ORIGINALSQL
CREATE OR REPLACE OUTLINE oln_to ON
select OWNER from oln_test where table_name = 'OLN_TEST';
-- Create the OUTLINE for HINTSQL
CREATE OR REPLACE OUTLINE oln_hint ON
select /*+FULL(oln_test)*/ OWNER from oln_test where table_name = 'OLN_TEST';
-- 交换outline
方法1:直接更新DBA_OUTLINES表(oracle官方不推荐)
SQL> conn / as sysdba
UPDATE DBA_OUTLINES
SET NAME=DECODE(NAME,'OLN_HINT','OLN_TO','OLN_TO','OLN_HINT')
WHERE NAME IN ('OLN_TO','OLN_HINT');
commit;
--验证结果,已使用outline
SQL> select OWNER from oln_test where table_name = 'OLN_TEST';
----------------------------------------------
Plan hash value: 1307524366
------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 33 | 1122 | 13 (0)| 00:00:01 |
|* 1 | TABLE ACCESS FULL| OLN_TEST | 33 | 1122 | 13 (0)| 00:00:01 |
------------------------------------------------------------------------------
Note
-----
- outline "OLN_HINT" used for this statement
有时候需要刷新内存
alter system flush shared_pool;
-- 方法2 通过私有outline来替换(推荐)
SQL> create private outline MY_to from oln_to;
SQL> create private outline MY_hint from oln_hint;
--必须和上面的命令使用同一个session
conn / as sysdba
UPDATE OL$HINTS
SET OL_NAME=DECODE(OL_NAME,'MY_HINT','MY_TO','MY_TO','MY_HINT')
WHERE OL_NAME IN ('MY_TO','MY_HINT');
commit;
set linesize 250;
col HINT_TEXT format a100;
select OL_name,HINT_TEXT from ol$hints;
-- 刷新内存中的outline信息
execute dbms_outln_edit.refresh_private_outline('MY_TO');
execute dbms_outln_edit.refresh_private_outline('MY_HINT');
--创建或更新public outline
create or replace outline OLN_TO from private MY_TO ;
--测试outline使用
--alter system set use_stored_outlines=DEFAULT;
select OWNER from oln_test where table_name = 'OLN_TEST';
-- drop the temporary OUTLINE HINTSQL
DROP OUTLINE oln_hint;
exec dbms_outln.drop_by_cat(cat => 'DEFAULT');
---10g以上版本可以通过shared pool中的sql生产outline
select owner from oln_test where table_name = 'OLN_TEST';
select sql_id,hash_value, child_number, sql_text from v$sql where sql_text like 'select count(*) from oln_test%';
SQL> -- to workaround Bug 5454975 fixed 10.2.0.4
SQL> alter session set create_stored_outlines = true;
exec dbms_outln.create_outline('3653752035',0);
SQL> exec dbms_outln.create_outline(hash_value => 646164864,child_number =>0);
SELECT COUNT(*) FROM WJ.OLN_TEST
select count(*) from wj.oln_test;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.
