Oracle 索引和执行计划
建了个测试的数据表,想测试建了索引和不建立索引的区别。建立表的数据量为108631962行。每次插入9999999行,每次大概半个小时。
建了个测试的数据表,想测试建了索引和不建立索引的区别。建立表的数据量为108631962行。每次插入9999999行,每次大概半个小时。在id上建立索引,,花时间为37秒,不建立索引花时间为:1分58秒。演示如下所示:
SQL> insert into studyindex1 select rownum id,'db'dbms_random.value(
2 1,100) name,dbms_random.string('X',20) remark from dual connect by level000000;
已创建9999999行。
SQL> commit;
提交完成。
SQL> select count(*) from studyindex1;
COUNT()
----------
108631962
12:13:22 SQL> create index id_idx on studyindex1(id);
索引已创建。
14:19:32 SQL> commit;
提交完成。
14:22:51 SQL> select id,name,remark from studyindex1 where id=203;
已选择38行。
执行计划
----------------------------------------------------------
Plan hash value: 2350744396
--------------------------------------------------------------------------------
-----------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
Time |
--------------------------------------------------------------------------------
-----------
| 0 | SELECT STATEMENT | | 38 | 77444 | 43 (0)|
00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| STUDYINDEX1| 38 | 77444 | 43 (0)|
00:00:01 |
|* 2 | INDEX RANGE SCAN | ID_IDX | 38 | | 3 (0)|
00:00:01 |
--------------------------------------------------------------------------------
-----------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("ID"=203)
Note
-----
- dynamic sampling used for this statement
统计信息
----------------------------------------------------------
9 recursive calls
0 db block gets
154 consistent gets
312 physical reads
0 redo size
3663 bytes sent via SQL*Net to client
514 bytes received via SQL*Net from client
4 SQL*Net roundtrips to/from client
0 sorts (memory)
0 sorts (disk)
38 rows processed
14:23:28 SQL> drop index id_idx;
索引已删除。
14:24:15 SQL> commit;
提交完成。
14:24:21 SQL> select id,name,remark from studyindex1 where id=203;
已选择38行。
执行计划
----------------------------------------------------------
Plan hash value: 469406081
--------------------------------------------------------------------------------
-
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time
|
--------------------------------------------------------------------------------
-
| 0 | SELECT STATEMENT | | 12417 | 24M| 248K (1)| 00:49:47
|
|* 1 | TABLE ACCESS FULL| STUDYINDEX1| 12417 | 24M| 248K (1)| 00:49:47
|
--------------------------------------------------------------------------------
-
Predicate Information (identified by operation id):
---------------------------------------------------
1 - filter("ID"=203)
Note
-----
- dynamic sampling used for this statement
统计信息
----------------------------------------------------------
169 recursive calls
0 db block gets
1121670 consistent gets
1053183 physical reads
0 redo size
3663 bytes sent via SQL*Net to client
514 bytes received via SQL*Net from client
4 SQL*Net roundtrips to/from client
4 sorts (memory)
0 sorts (disk)
38 rows processed
14:26:19 SQL>

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
