Oracle 分组函数用法示例详解
聚合函数、多行函数、分组函数都是一类函数GROUP BY 和 HAVING group 函数:AVG\SUM\MIN\MAX\COUNT\STDDEV\VARIANCEDISTINCT 与
聚合函数、多行函数、分组函数都是一类函数
GROUP BY 和 HAVING
group 函数:AVG\SUM\MIN\MAX\COUNT\STDDEV\VARIANCE
DISTINCT 与 group 函数结合使用
NULL 值在 group函数当中的处理
嵌套 group 函数
group 函数的语法:
SELECT GROUP_FUNCTION(COLUMN),...
FROM TABLE
[WHERE CONDITION]
[ORDER BY COLUMN];
---示例1:AVG\MAX\MIN\SUM针对NUMBER类型数据
SELECT AVG(SALARY), MAX(SALARY), MIN(SALARY), SUM(SALARY)
FROM EMPLOYEES
WHERE JOB_ID LIKE '%REP%';
AVG(SALARY) MAX(SALARY) MIN(SALARY) SUM(SALARY)
----------- ----------- ----------- -----------
8272.72727 11500 6000 273000
---示例2:MIN和MAX可以针对number外还可以针对date类型数据
hr@PROD> SELECT MIN(HIRE_DATE), MAX(HIRE_DATE) FROM EMPLOYEES;
MIN(HIRE_ MAX(HIRE_
--------- ---------
17-JUN-87 21-APR-00
----示例3:COUNT(*) 和 COUNT(1),COUNT(1)的速度比COUNT(*)快
hr@PROD> SELECT COUNT(*) FROM EMPLOYEES;
COUNT(*)
----------
107
-----COUNT(*)返回某个表中的行数
hr@PROD> SELECT COUNT(1) FROM EMPLOYEES;
COUNT(1)
----------
107
---COUNT(EXPR)符合expr 的所有非空值行的行数,请看下例:
hr@PROD> SELECT COUNT(COMMISSION_PCT) FROM EMPLOYEES;
COUNT(COMMISSION_PCT)
---------------------
35
hr@PROD> SELECT COUNT(DEPARTMENT_ID) FROM EMPLOYEES;
COUNT(DEPARTMENT_ID)
--------------------
106
hr@PROD> SELECT COUNT(EMPLOYEE_ID) FROM EMPLOYEES;
COUNT(EMPLOYEE_ID)
------------------
107
------------DISTINCT 和 group 函数的配合使用
示例:
hr@PROD> SELECT COUNT(DISTINCT DEPARTMENT_ID) FROM EMPLOYEES;
COUNT(DISTINCTDEPARTMENT_ID)
----------------------------
11
--------------------------------
-----------group 函数对 Null 值的处理
----group 函数忽略列中的 null 值
hr@PROD> SELECT COUNT(COMMISSION_PCT) FROM EMPLOYEES;
COUNT(COMMISSION_PCT)
---------------------
35
hr@PROD> SELECT COUNT(NVL(COMMISSION_PCT,0)) FROM EMPLOYEES;
COUNT(NVL(COMMISSION_PCT,0))
----------------------------
107
-----35 人参与计算
hr@PROD> SELECT AVG(COMMISSION_PCT) FROM EMPLOYEES;
AVG(COMMISSION_PCT)
-------------------
.222857143
------107 人参与计算
hr@PROD> SELECT AVG(NVL(COMMISSION_PCT,0)) FROM EMPLOYEES;
AVG(NVL(COMMISSION_PCT,0))
--------------------------
.072897196
-------创建分组数据----
GROUP BY 子句
计算每个部门中的平均薪水
SELECT COLUMN ,GROUP_FUNCTION(COLUMN)
FROM TABLE
[WHERE CONDITION]
[GROUP BY GROUP_BY_EXPRESSION]
[ORDER BY COLUMN];
注意:SELECT 子句中的 COLUMN 必须包含在 GROUP BY 子句中
列出的单行必须包含在 group by 子句中
执行顺序,先计算 WHERE,后计算group by,再查询结果,最后执行 order by
order by 中可以使用别名,,where 和 group by 中不允许使用别名

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
