Linux系统中配置MySQL群集(MySQL Cluster)
MySQL群集需要有一组计算机,每台计算机的角色可能是不一样的。MySQL群集中有三种节点:管理节点、数据节点和SQL节点。群集中的某
Mysql群集(Cluster)简介
数据节点用于存储数据。
下图中画出了三种群集节点及应用程序间的关系:
一、配置环境:
MySQL:mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz
节点配置情况:
hostname IP地址应用服务
DB1 172.16.10.160 MGM
DB2 172.16.10.161 NDBD1,MYSQLD
DB3 172.16.10.162 NDBD2, MYSQLD
DB4 172.16.10.254 MYSQLD
二、管理节点:
(一)安装管理节点MGM
#groupadd mysql
#useradd mysql -g mysql
#mv mysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz/usr/local/
#cd /usr/local/
#tar zxvfmysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz
#rm -fmysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz
#mv mysql-cluster-gpl-7.0.8a-linux-i686-glibc23mysql
#chown -R mysql:mysql mysql
(二)配置装管理节点MGM
#mkdir/var/lib/mysql-cluster
#cd /var/lib/mysql-cluster
[NDBD DEFAULT]
NoOfReplicas=2 #副本数量,建议使用默认的2
DataMemory=600M #每个数据节点中给数据分配的内存
IndexMemory=100M #每个数据节点中给索引分配的内存
BackupMemory: 20M
Nodeid= 1
[NDBD]
HostName=172.16.10.162
DataDir=/usr/local/mysql/data
HostName=172.16.10.161
[mysqld]
HostName=172.16.10.162
[mysqld]
HostName=172.16.10.254
[mysqld] #建议保留一个SQL节点配置口
(三)管理节点启动相关服务及测试:
#/usr/local/mysql/bin/ndb_mgmd -f /var/lib/mysql-cluster/config.ini
#netstat -lntpu
tcp 0 0 0.0.0.0:1186 0.0.0.0:* LISTEN 22907/ndb_mgmd
看到1186端口开放了说明启动是正常的.
ndb_mgmd -f /var/lib/mysql-cluster/config.ini --initial
#/usr/local/mysql/bin/ndb_mgm -e show
关闭管理节点,如下:
#/usr/local/mysql/bin/ndb_mgm -e shutdown
三、数据节点和SQL节点:
#groupadd mysql
#useradd mysql -g mysql
#mvmysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz /usr/local/
#cd /usr/local/
#tar zxvfmysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz
#rm -fmysql-cluster-gpl-7.0.8a-linux-i686-glibc23.tar.gz
#mv mysql-cluster-gpl-7.0.8a-linux-i686-glibc23mysql
#chown -R mysql:mysql mysql
#cd mysql
#scripts/mysql_install_db --user=mysql
#cp support-files/my-medium.cnf /etc/my.cnf
#cp support-files/mysql.server /etc/init.d/mysqld
(二)配置数据节点和SQL节点
[mysqld]
(三)数据节点和SQL节点服务:
启动数据节点
#/usr/local/mysql/bin/ndbd –initial #/usr/local/mysql/bin/ndbd
启动SQL节点
Service mysqld start

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
