Oracle的SQL Tuning Advisor(STA) 到底做了什么?
SQL Tuing Advisor(STA) 是Automatic Tuning Optimizer(自动优化调整器)的一部分。在前面的文章使用SQL tuning advisor(STA)自动
SQL Tuing Advisor(STA) 是Automatic Tuning Optimizer(自动优化调整器)的一部分。在前面的文章使用SQL tuning advisor(STA)自动优化SQL中描述了SQL Tuing Advisor(STA)的相关背景并给出示例。本文主要是描述STA底层到底为我们作了什么使得SQL语句得以优化,同时演示绑定变量的情形下接受sql profile后,后续SQL是否采纳对应的sql profile的执行计划的情形。最后给出了awr中的SQL通过STA tuning的脚本。
1、使用STA优化library cache中的SQL
--演示环境
hr@CNMMBO> select * from v$version where rownum
BANNER
----------------------------------------------------------------
Oracle Database 10g Release 10.2.0.3.0 - 64bit Production
--下面直接根据sql_id优化library cache中的SQL语句
hr@CNMMBO> @tune_cache_sql
Enter value for input_sql_id: 8rnmr2dpnjvk8
Enter value for input_task_name: hr_query
RECS
---------------------------------------------------------------------------------------
GENERAL INFORMATION SECTION
-------------------------------------------------------------------------------
Tuning Task Name : hr_query
Tuning Task Owner : HR
Scope : COMPREHENSIVE
Time Limit(seconds) : 1800
Completion Status : COMPLETED
Started at : 06/07/2013 11:40:27
Completed at : 06/07/2013 11:40:28
Number of SQL Profile Findings : 1
Number of SQL Restructure Findings: 1
-------------------------------------------------------------------------------
Schema Name: HR
SQL ID : 8rnmr2dpnjvk8
SQL Text : SELECT /*+ ORDERED */
*
FROM employees e, locations l, departments d
WHERE e.department_id = d.department_id AND l.location_id =
d.location_id AND e.employee_id
-------------------------------------------------------------------------------
FINDINGS SECTION (2 findings)
-------------------------------------------------------------------------------
1- SQL Profile Finding (see explain plans section below)
--------------------------------------------------------
A potentially better execution plan was found for this statement.
Recommendation (estimated benefit: 90.74%)
------------------------------------------
- Consider accepting the recommended SQL profile.
execute dbms_sqltune.accept_sql_profile(task_name => 'hr_query', replace
=> TRUE);
2- Restructure SQL finding (see plan 1 in explain plans section)
----------------------------------------------------------------
An expensive cartesian product operation was found at line ID 3 of the
execution plan.
Recommendation
--------------
- Consider removing the "ORDERED" hint.
Rationale
---------
The "ORDERED" hint might force the optimizer to generate a cartesian
product. A cartesian product should be avoided whenever possible because
it is an expensive operation and might produce a large amount of data.
-------------------------------------------------------------------------------
EXPLAIN PLANS SECTION
-------------------------------------------------------------------------------
1- Original With Adjusted Cost
------------------------------
Plan hash value: 3871948714
-----------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
-----------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 85 | 11645 | 103 (1)| 00:00:02 |
|* 1 | HASH JOIN | | 85 | 11645 | 103 (1)| 00:00:02 |
| 2 | TABLE ACCESS FULL | DEPARTMENTS | 27 | 540 | 3 (0)| 00:00:01 |
| 3 | MERGE JOIN CARTESIAN | | 1973 | 225K| 99 (0)| 00:00:02 |
| 4 | TABLE ACCESS BY INDEX ROWID| EMPLOYEES | 86 | 5848 | 3 (0)| 00:00:01 |
|* 5 | INDEX RANGE SCAN | EMP_EMP_ID_PK | 86 | | 1 (0)| 00:00:01 |
| 6 | BUFFER SORT | | 23 | 1127 | 96 (0)| 00:00:02 |
| 7 | TABLE ACCESS FULL | LOCATIONS | 23 | 1127 | 1 (0)| 00:00:01 |
-----------------------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.
