Oracle 11g RAC+单实例数据库构建DataGuard
Oracle 11g RAC+单实例数据库构建DataGuard
一、数据库及操作系统初始环境:
准备已经安装完毕可以正常运行的RAC数据库,以及一台安装完Oracle软件未创建数据库的。
RAC和单实例安装可以参考链接:
其中RAC做为DG的主库。
RAC 节点1:-IPIP
如下:
[grid@bysrac1 ~]$ cat /etc/hosts
127.0.0.1 localhost.localdomain localhost
::1 localhost6.localdomain6localhost6
[oracle@racdg ~]$ cat .bash_profile
ORACLE_BASE=/u01
ORACLE_HOME=/u01/app/oracle/product/11.2.0/dbhome_1
ORACLE_SID=racdg
PATH=$ORACLE_HOME/bin:$ORACLE_HOME/OPatch:$PATH:$HOME/bin
export PATH ORACLE_BASE ORACLE_HOME ORACLE_SID
alias sqlplus='rlwrap sqlplus'
alias rman='rlwrap rman'
SYS@bysrac1>archive log list
Database log mode Archive Mode
Automatic archival Enabled
Archive destination +BYSASMDATA
Oldest online log sequence 156
Next log sequence to archive 157
Current log sequence 157
SYS@bysrac1>show parameter recovery
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
db_recovery_file_dest string +BYSASMDG
db_recovery_file_dest_size big integer 4977M
recovery_parallelism integer 0
SYS@bysrac1>select db_unique_name,name from v$database;
DB_UNIQUE_NAME NAME
------------------------------ ---------
bysrac BYSRAC
SYS@bysrac1>select name from v$datafile;
NAME
----------------------------------------------------------------------------------------------------
+BYSASMDATA/bysrac/datafile/system.259.818615175
+BYSASMDATA/bysrac/datafile/sysaux.260.818615237
+BYSASMDATA/bysrac/datafile/undotbs1.261.818615291
+BYSASMDATA/bysrac/datafile/undotbs2.263.818615365
+BYSASMDATA/bysrac/datafile/users.264.818615419
+BYSASMDATA/bysrac/datafile/test1_undo.dbf
+BYSASMDATA/bysrac/datafile/test1.dbf
BYS@bysrac1>selectname,block_size*file_size_blks/1024/1024 as bytes_m from v$controlfile;
NAME BYTES_M
-------------------------------------------------- ----------
+BYSASMDATA/bysrac/controlfile/current.256.8186151 17.6875
19
+BYSASMDG/bysrac/controlfile/current.256.818615127 17.6875
BYS@bysrac1>select group#,member from v$logfile;
GROUP# MEMBER
---------- --------------------------------------------------
1+BYSASMDATA/bysrac/onlinelog/group_1.257.818615137
1+BYSASMDG/bysrac/onlinelog/group_1.257.818615145
2+BYSASMDATA/bysrac/onlinelog/group_2.258.818615153
2+BYSASMDG/bysrac/onlinelog/group_2.258.818615163
3+BYSASMDATA/bysrac/onlinelog/group_3.265.818619941
3+BYSASMDG/bysrac/onlinelog/group_3.259.818619949
4+BYSASMDATA/bysrac/onlinelog/group_4.266.818619961
4+BYSASMDG/bysrac/onlinelog/group_4.260.818619967
SQL> alter system set standby_file_management=auto scope=spfile;
SQL> alter system set log_archive_config="DG_CONFIG=(bysrac,racdg)"scope=spfile;
SQL> alter system set log_archive_dest_2="SERVICE=racdg LGWRSYNC VALID_FOR=(ONLINE_LOGFILES,PRIMARY_ROLE)DB_UNIQUE_NAME=racdg" scope=spfile;
SQL> alter system set fal_server=racdg scope=spfile;
SQL> alter system set fal_client=bysrac;
SQL> alter system setdb_file_name_convert="+BYSASMDATA/bysrac/datafile/","/u01/oradata/racdg",'+BYSASMDATA/bysrac/tempfile/','/u01/oradata/racdg/' scope=spfile;
SQL> alter system set log_file_name_convert="+BYSASMDATA/bysrac/onlinelog/","/u01/oradata/racdg",'+BYSASMDG/bysrac/onlinelog/','/u01/oradata/racdg/' scope=spfile;
推荐阅读:
使用RMAN的Duplicate功能创建物理DataGuard
Oracle基础教程之通过RMAN复制数据库
RMAN备份策略制定参考内容
RMAN备份学习笔记
Oracle数据库备份加密 RMAN加密
通过RMAN备份duplicate创建DataGuard
本文的更多详情请继续阅读第2页的精彩内容:

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Full table scanning may be faster in MySQL than using indexes. Specific cases include: 1) the data volume is small; 2) when the query returns a large amount of data; 3) when the index column is not highly selective; 4) when the complex query. By analyzing query plans, optimizing indexes, avoiding over-index and regularly maintaining tables, you can make the best choices in practical applications.

Yes, MySQL can be installed on Windows 7, and although Microsoft has stopped supporting Windows 7, MySQL is still compatible with it. However, the following points should be noted during the installation process: Download the MySQL installer for Windows. Select the appropriate version of MySQL (community or enterprise). Select the appropriate installation directory and character set during the installation process. Set the root user password and keep it properly. Connect to the database for testing. Note the compatibility and security issues on Windows 7, and it is recommended to upgrade to a supported operating system.

The difference between clustered index and non-clustered index is: 1. Clustered index stores data rows in the index structure, which is suitable for querying by primary key and range. 2. The non-clustered index stores index key values and pointers to data rows, and is suitable for non-primary key column queries.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.
