在优化SQL语句中使用虚拟索引
是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的
定义:虚拟索引(virtual index) 是指没有创建对应的物理段的索引。
虚拟索引的目的:是在不损耗主机CPU,IO,磁盘空间去实际创建索引的情况下,来判断一个索引是否能够对SQL优化起到作用。列如我们在优化一条SQL语句的时候,通常会查看需要优化的语句的执行计划,在考虑是否需要在表的某列上建立索引时就可以用到虚拟索引。虚拟索引建立的时候因为其没有消耗主机的相关资源,因此可以在相当快的时间内建立完成。
下面我们来看一下试验:
首先建立两张测试表
create table bigtab as select rownum as id,a.* from sys.all_objects a;
create table smalltab as select rownum as id,a.* from sys.all_tables a;
多次运行以下语句,,以插入多一些测试数据:
insert into bigtab select ronum as id,a.* from sys.all_objects a;
insert into smalltab select rownum as id,a.* from sys.all_tables a;
查看需要执行语句的执行计划:
SQL> explain plan for select count(*) from bigtab a,smalltab b where a.object_name=b.table_name;
Explained.
SQL> select * from table(dbms_xplan.display());
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Plan hash value: 3089226980
--------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 1 | 40 | 518 (1)| 00:00:07 |
| 1 | SORT AGGREGATE | | 1 | 40 | | |
|* 2 | HASH JOIN | | 99838 | 3899K| 518 (1)| 00:00:07 |
| 3 | TABLE ACCESS FULL| SMALLTAB | 15311 | 299K| 172 (0)| 00:00:03 |
| 4 | TABLE ACCESS FULL| BIGTAB | 85284 | 1665K| 345 (1)| 00:00:05 |
--------------------------------------------------------------------------------
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
Predicate Information (identified by operation id):
---------------------------------------------------
2 - access("A"."OBJECT_NAME"="B"."TABLE_NAME")
16 rows selected.
下面我们在两个表上创建两个虚拟索引,分别在object_name和table_name列上,看看优化器是否会使用这两个索引,以及优化器的成本会如何变化。
SQL> show parameter _use_nosegment
SQL> alter session set "_use_nosegment_indexes"=true;
Session altered.
SQL> show parameter _use_nosegment
NAME TYPE VALUE
------------------------------------ ----------- ------------------------------
_use_nosegment_indexes boolean TRUE
SQL> create index big_ind on bigtab(object_name) nosegment;
Index created.
SQL> create index small_ind on smalltab(table_name) nosegment;

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

Article discusses using foreign keys to represent relationships in databases, focusing on best practices, data integrity, and common pitfalls to avoid.

The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.

Article discusses securing MySQL against SQL injection and brute-force attacks using prepared statements, input validation, and strong password policies.(159 characters)
