Home > Database > Mysql Tutorial > Hive中使用自定义函数(UDF)实现分析函数row_number的功能

Hive中使用自定义函数(UDF)实现分析函数row_number的功能

WBOY
Release: 2016-06-07 17:32:58
Original
1555 people have browsed it

之前部门实现row_number是使用的transform,我觉得用UDF实现后,平时的使用会更方便,免去了transform相对繁琐的语法。

之前部门实现row_number是使用的transform,,我觉得用UDF实现后,平时的使用会更方便,免去了transform相对繁琐的语法。

    用到的测试表为:

hive> desc row_number_test;
OK
id1    int
id2    string
age    int
score  double
name    string

 

hive> select * from row_number_test;
OK
2      t04    25      60.0    youlia
1      t01    20      85.0    liujiannan
1      t02    24      70.0    zengqiu
2      t03    30      88.0    hongqu
2      t03    27      70.0    yongqi
1      t02    19      75.0    wangdong
1      t02    24      70.0    zengqiu

 

使用时要先在子查询中进行分区与排序,比如Oracle中这样一句SQL:

select row_number() over (partition by id1 order by age desc) from row_number_test;

转换为hive语句应该是:

select row_number(id1) from  --partition by的字段传到row_number函数中去

    (select * from row_number_test distribute by id1 sort by id1,age desc) a;

 

如果partition by 两个字段:

select row_number() over (partition by id1,id2 order by score) from row_number_test;

转换为hive语句应该是:

select row_number(id1,id2)  --partition by的字段传到row_number函数中去

    from (select * from row_number_test distribute by id1,id2 sort by id1,id2,score) a;

 

展示一下查询结果:

1.

select id1,id2,age,score,name,row_number(id1) rn from (select * from row_number_test distribute by id1 sort by id1,age desc) a;

 

OK
2      t03    30      88.0    hongqu          1
2      t03    27      70.0    yongqi          2
2      t04    25      60.0    youlia          3
1      t02    24      70.0    zengqiu        1
1      t02    24      70.0    zengqiu        2
1      t01    20      85.0    liujiannan      3
1      t02    19      75.0    wangdong        4

 

2.

select id1,id2,age,score,name,row_number(id1,id2) rn from (select * from row_number_test distribute by id1,id2 sort by id1,id2,score) a;

 

OK
2      t04    25      60.0    youlia          1
1      t02    24      70.0    zengqiu        1
2      t03    27      70.0    yongqi          1
1      t02    24      70.0    zengqiu        2
1      t02    19      75.0    wangdong        3
1      t01    20      85.0    liujiannan      1
2      t03    30      88.0    hongqu          2

 

下面是代码,只实现了接收1个参数和2个参数的evaluator方法,参数再多的照搬代码就可以了,代码仅供参考:

package com.Hadoopbook.hive;

import org.apache.hadoop.hive.ql.exec.UDF;

import org.apache.hadoop.hive.ql.udf.UDFType;

@UDFType(deterministic = false)

public class Row_number extends UDF {

private static int MAX_VALUE = 50;

private static String comparedColumn[] = new String[MAX_VALUE];

private static int rowNum = 1;

public int evaluate (Object ...args){

String columnValue[] = new String[args.length];

for(int i=0;i

columnValue[i] = args[i].toString();

if (rowNum == 1)

{

for(int i=0;i

comparedColumn[i] = columnValue[i];

}

for(int i=0;i

{

if ( !comparedColumn[i].equals(columnValue[i]) )

{

for (int j=0;j

{

comparedColumn[j] = columnValue[j];

}

rowNum = 1;

return rowNum++;

}

}

return rowNum++;

}

public static void main(String args[])

{

Row_number t = new Row_number();

System.out.println(t.evaluate(123));

System.out.println(t.evaluate(123));

System.out.println(t.evaluate(123));

System.out.println(t.evaluate(1234));

System.out.println(t.evaluate(1234));

System.out.println(t.evaluate(1234));

System.out.println(t.evaluate(1235));

}

}

Hive 的详细介绍:请点这里
Hive 的下载地址:请点这里

相关阅读:

基于Hadoop集群的Hive安装

Hive内表和外表的区别

Hadoop + Hive + Map +reduce 集群安装部署

Hive本地独立模式安装

Hive学习之WordCount单词统计

linux

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template