Home Database Mysql Tutorial Oracle 不使用索引的原因有哪些?

Oracle 不使用索引的原因有哪些?

Jun 07, 2016 pm 05:36 PM
oracle index

今天开始总结一下oracle不使用索引的原因有哪些。一边学习一边做笔记。聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一

今天开始总结一下Oracle不使用索引的原因有哪些。一边学习一边做笔记。

第一种:行数存在差异。

在视图user_tables存在一个num_rows字段,该字段是记录在统计信息收集后所对应对象的行数,在user_tab_columns视图中存在一个num_distinct字段,该字段记录每个字段内不同数值的个数。oracle认为当num_distinct越接近num_rows的时候索引的选择性越好,那么在执行查询的时候越容易使用索引。

第二种:聚簇因子:

什么是聚簇因子?

聚簇因子是衡量索引列数据顺序与表字段数据顺序相似性的一个值。我们都知道在创建的表中一般都是堆表,也就是数据在表中存储是无续的,那么为了更加快速的访问数据,我们通常使用索引进行数据访问,这时候没个索引都有一个聚簇因子,聚簇因子越接近对象的块数,那么选择性越好,越接近表的行数那么选择性越差。

之前听到有个朋友曾经提到这么一个问题“为什么我在测试环境查询一个数据很快和在生产环境查询数据怎么这么慢呢?表结构都一样的,数据也是一样的。”。那么不妨看看聚簇因子是多少。

聚簇因子的查看是从user_ind_statistics视图中: CLUSTERING_FACTOR 表示的。看一下官方介绍:

Indicates the amount of order of the rows in the table based on the values of the index.

  • If the value is near the number of blocks, then the table is very well ordered. In this case, the index entries in a single leaf block tend to point to rows in the same data blocks.

  • If the value is near the number of rows, then the table is very randomly ordered. In this case, it is unlikely that index entries in the same leaf block point to rows in the same data blocks.

  • 往往聚簇因子的大小和数据获取的I/o存在一定的相似性。如果聚簇因子大,那么相对的物理或是逻辑(一般是)i/o开销很大,也就是块被频繁反复读取,一致数据获取很慢。

    长查询的视图有dba_ind_statistics和dba_tab_statistics

    第三种:使用不等条件:

    当使用在进行查询数据的时候使用不等条件,,那么oracle任务这个符号会需要读取大部分的数据块,那么就会跳过使用索引。eg:

    SQL> select index_name,table_name,column_name from user_ind_columns where table_name='EMP';

    INDEX_NAME                    TABLE_NAME                    COLUMN_NAME
    ------------------------------ ------------------------------ ----------------------------------------
    EMP_IDX1                      EMP                            DEPTNO
    EMP_IDX1                      EMP                            EMPNO

    SQL> select * from emp;

        EMPNO ENAME      JOB              MGR HIREDATE        SAL      COMM    DEPTNO
    ---------- ---------- --------- ---------- --------- ---------- ---------- ----------
          7782 CLARK      MANAGER        7839 09-JUN-81      2450                    10
          7839 KING      PRESIDENT            17-NOV-81      5000                    10
          7934 MILLER    CLERK          7782 23-JAN-82      1300                    10
          7369 SMITH      CLERK          7902 17-DEC-80        800                    20
          7566 JONES      MANAGER        7839 02-APR-81      2975                    20
          7788 SCOTT      ANALYST        7566 19-APR-87      3000                    20
          7876 ADAMS      CLERK          7788 23-MAY-87      1100                    20
          7902 FORD      ANALYST        7566 03-DEC-81      3000                    20
          7499 ALLEN      SALESMAN        7698 20-FEB-81      1600        300        30
          7521 WARD      SALESMAN        7698 22-FEB-81      1250        500        30
          7654 MARTIN    SALESMAN        7698 28-SEP-81      1250      1400        30
          7698 BLAKE      MANAGER        7839 01-MAY-81      2850                    30
          7844 TURNER    SALESMAN        7698 08-SEP-81      1500          0        30
          7900 JAMES      CLERK          7698 03-DEC-81        950                    30

    14 rows selected.

    SQL> set autotrace trace exp
    SQL> select * from emp where empno7900;

    Execution Plan
    ----------------------------------------------------------
    Plan hash value: 822536733

    Statement of this Website
    The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

    Hot AI Tools

    Undresser.AI Undress

    Undresser.AI Undress

    AI-powered app for creating realistic nude photos

    AI Clothes Remover

    AI Clothes Remover

    Online AI tool for removing clothes from photos.

    Undress AI Tool

    Undress AI Tool

    Undress images for free

    Clothoff.io

    Clothoff.io

    AI clothes remover

    AI Hentai Generator

    AI Hentai Generator

    Generate AI Hentai for free.

    Hot Article

    R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
    3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. Best Graphic Settings
    3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O. How to Fix Audio if You Can't Hear Anyone
    3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
    WWE 2K25: How To Unlock Everything In MyRise
    4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

    Hot Tools

    Notepad++7.3.1

    Notepad++7.3.1

    Easy-to-use and free code editor

    SublimeText3 Chinese version

    SublimeText3 Chinese version

    Chinese version, very easy to use

    Zend Studio 13.0.1

    Zend Studio 13.0.1

    Powerful PHP integrated development environment

    Dreamweaver CS6

    Dreamweaver CS6

    Visual web development tools

    SublimeText3 Mac version

    SublimeText3 Mac version

    God-level code editing software (SublimeText3)

    How do you alter a table in MySQL using the ALTER TABLE statement? How do you alter a table in MySQL using the ALTER TABLE statement? Mar 19, 2025 pm 03:51 PM

    The article discusses using MySQL's ALTER TABLE statement to modify tables, including adding/dropping columns, renaming tables/columns, and changing column data types.

    Explain InnoDB Full-Text Search capabilities. Explain InnoDB Full-Text Search capabilities. Apr 02, 2025 pm 06:09 PM

    InnoDB's full-text search capabilities are very powerful, which can significantly improve database query efficiency and ability to process large amounts of text data. 1) InnoDB implements full-text search through inverted indexing, supporting basic and advanced search queries. 2) Use MATCH and AGAINST keywords to search, support Boolean mode and phrase search. 3) Optimization methods include using word segmentation technology, periodic rebuilding of indexes and adjusting cache size to improve performance and accuracy.

    How do I configure SSL/TLS encryption for MySQL connections? How do I configure SSL/TLS encryption for MySQL connections? Mar 18, 2025 pm 12:01 PM

    Article discusses configuring SSL/TLS encryption for MySQL, including certificate generation and verification. Main issue is using self-signed certificates' security implications.[Character count: 159]

    How do you handle large datasets in MySQL? How do you handle large datasets in MySQL? Mar 21, 2025 pm 12:15 PM

    Article discusses strategies for handling large datasets in MySQL, including partitioning, sharding, indexing, and query optimization.

    What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? What are some popular MySQL GUI tools (e.g., MySQL Workbench, phpMyAdmin)? Mar 21, 2025 pm 06:28 PM

    Article discusses popular MySQL GUI tools like MySQL Workbench and phpMyAdmin, comparing their features and suitability for beginners and advanced users.[159 characters]

    How do you drop a table in MySQL using the DROP TABLE statement? How do you drop a table in MySQL using the DROP TABLE statement? Mar 19, 2025 pm 03:52 PM

    The article discusses dropping tables in MySQL using the DROP TABLE statement, emphasizing precautions and risks. It highlights that the action is irreversible without backups, detailing recovery methods and potential production environment hazards.

    Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Explain different types of MySQL indexes (B-Tree, Hash, Full-text, Spatial). Apr 02, 2025 pm 07:05 PM

    MySQL supports four index types: B-Tree, Hash, Full-text, and Spatial. 1.B-Tree index is suitable for equal value search, range query and sorting. 2. Hash index is suitable for equal value searches, but does not support range query and sorting. 3. Full-text index is used for full-text search and is suitable for processing large amounts of text data. 4. Spatial index is used for geospatial data query and is suitable for GIS applications.

    How do you create indexes on JSON columns? How do you create indexes on JSON columns? Mar 21, 2025 pm 12:13 PM

    The article discusses creating indexes on JSON columns in various databases like PostgreSQL, MySQL, and MongoDB to enhance query performance. It explains the syntax and benefits of indexing specific JSON paths, and lists supported database systems.

    See all articles