巧用临时表将大结果集转换为小结果集驱动查询
sql如下SELECTDISTINCTo.orders_id,o.oa_order_id,os.orders_status_name,o.order_type,o.date_purchasedASadd_date,dop.resource,dop.country_codeFROMdm_order
sql如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM dm_order_products AS dop LEFT JOIN orders AS o ON o.orders_id=dop.orders_id LEFT JOIN orders_total AS ot ON ot.orders_id=o.orders_id AND ot.class='ot_total' LEFT JOIN orders_status AS os ON os.orders_status_id=o.orders_status WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased 因为需要在大结果集中order by 去重,再显示20条.表特性是orders(o)表对dm_order_products(dop)表为一对多关系,而取出来的dop.country_code为一个订单号对应唯一值,由于表结构设计问题,每次查询该country_code都需要去dop查询。所以,每次查询都放大结果集,,然后再去重,得到所要的结果集合。
explain
+----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+ | 1 | SIMPLE | o | range | PRIMARY,date_purchased | date_purchased | 9 | NULL | 952922 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | banggood_work.o.orders_id | 3 | | | 1 | SIMPLE | os | ref | PRIMARY | PRIMARY | 4 | banggood_work.o.orders_status | 1 | | | 1 | SIMPLE | dop | ref | orders_id | orders_id | 4 | banggood_work.o.orders_id | 2 | | +----+-------------+-------+-------+----------------------------------+----------------------------+---------+-------------------------------+-------+----------------------------------------------+索引情况使用正常,但是发现需要扫描一个大结果集.
profiling,执行时间为将近20s
mysql> show profile cpu,block io for query 1; +--------------------------------+-----------+----------+------------+--------------+---------------+ | Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out | +--------------------------------+-----------+----------+------------+--------------+---------------+ | starting | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | checking query cache for query | 0.000080 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000005 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000003 | 0.000000 | 0.000000 | 0 | 0 | | checking permissions | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | Opening tables | 0.000034 | 0.000000 | 0.000000 | 0 | 0 | | System lock | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | Waiting for query cache lock | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | | init | 0.000046 | 0.000000 | 0.000000 | 0 | 0 | | optimizing | 0.000018 | 0.000000 | 0.000000 | 0 | 0 | | statistics | 0.000193 | 0.000000 | 0.000000 | 0 | 0 | | preparing | 0.000054 | 0.000000 | 0.000000 | 0 | 0 | | Creating tmp table | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | | executing | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | Copying to tmp table | 12.491533 | 3.039538 | 3.107527 | 11896 | 824 | | Sorting result | 0.030709 | 0.034995 | 0.004000 | 16 | 496 | | Sending data | 0.000048 | 0.000000 | 0.000000 | 0 | 0 | | end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | removing tmp table | 0.010108 | 0.000000 | 0.010998 | 8 | 32 | | end | 0.000013 | 0.000000 | 0.000000 | 0 | 0 | | query end | 0.000004 | 0.000000 | 0.000000 | 0 | 0 | | closing tables | 0.000012 | 0.000000 | 0.000000 | 0 | 0 | | freeing items | 0.000338 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000006 | 0.000000 | 0.000000 | 0 | 0 | | logging slow query | 0.000033 | 0.000000 | 0.000000 | 0 | 8 | | cleaning up | 0.000006 | 0.000000 | 0.000000 | 0 | 0 |可以看到Copying to tmp table 占了大部分的cpu时间和io,最后sorting result占比重不大。
我们可以上面描述的结合特性,是否能够去掉Copying to tmp table 选项!因为是根据orders_id排序,取出最新的20条数据,如果我们在orders表中先把20条数据取出来,再和对应的表连接,这样一来,就将整个大结果Copying to tmp table 再排序这一步去掉!
看sql语句如下
SELECT DISTINCT o.orders_id, o.oa_order_id,os.orders_status_name, o.order_type, o.date_purchased AS add_date,dop.resource, dop.country_code FROM ( SELECT * FROM orders AS o WHERE o.date_purchased >= '2014-01-31 10:00:00' AND o.date_purchased | ALL | NULL | NULL | NULL | NULL | 20 | Using temporary; Using filesort | | 1 | PRIMARY | dop | ref | orders_id | orders_id | 4 | o.orders_id | 2 | | | 1 | PRIMARY | ot | ref | idx_orders_total_orders_id,class | idx_orders_total_orders_id | 4 | o.orders_id | 3 | | | 1 | PRIMARY | os | ref | PRIMARY | PRIMARY | 4 | o.orders_status | 1 | | | 2 | DERIVED | o | index | date_purchased | PRIMARY | 4 | NULL | 330 | Using where | +----+-------------+------------+-------+----------------------------------+----------------------------+---------+-----------------+------+---------------------------------+
Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
