[整理]MySql批量数据导入Load data infile解决方案
有时候我们需要将大量数据批量写入数据库,直接使用程序语言和Sql写入往往很耗时间,其中有一种方案就是使用MySqlLoaddatainfile导入文件的形式导入数据,这样可
add:
[mysqld]
local-infile=1
[mysql]
local-infile=1
客户端和服务端度需要开启,对于客户端也可以在执行命中加上--local-infile=1 参数:
mysql --local-infile=1 -uroot -pyourpwd yourdbname
如:
如:/usr/local/mysql/bin/mysql -uroot -h192.168.0.2 -proot databaseName --local-infile=1 -e "LOAD DATA LOCAL INFILE 'data.txt' into table test(name,sex) "
2, 编码格式注意:
若包含中文,请保证导入文件、连接字符串、导入表都是UTF-8编码。
3,执行
在使用LOAD DATA到MySQL的时候,有2种情况:
(1)在远程客户端(需要添加选项:--local-infile=1)导入远程客户端文本到MySQL,需指定LOCAL(默认就是ignore),加ignore选项会放弃数据,加replace选项会更新数据,都不会出现唯一性约束问题。
[zhuxu@xentest9-vm1 tmp]$mysql -uzhuxu -pzhuxu test -h10.254.5.151 --local-infile=1--show-warnings -v -v -v \
> -e "LOAD DATA LOCAL INFILE '/tmp/2.txt' INTO TABLE tmp_loaddata FIELDS TERMINATED BY ','";
(2)在本地服务器导入本地服务器文本到MySQL,不指定LOACL,出现唯一性约束冲突,会失败回滚,数据导入不进去,这个时候就需要加ignore或者replace来导入数据。
mysql>LOAD DATA INFILE '/home/zhuxu/1.txt' INTO TABLE tmp_loaddata FIELDS TERMINATED BY ',';
4,事务分析
步骤是这样的:
1,开启binlog,设置binlog_format=row,执行reset master;
2,load data infile xxxxx;
3,查看binlog。
可以看出,总共是一个事务,也通过mysqlbinlog查看了binary log,确认中间是被拆分成了多个insert形式。所以load data infile基本上是这样执行的:
begin
insert into values(),(),(),()...
insert into values(),(),(),()...
insert into values(),(),(),()...
...
...
commit
当然,由于row格式的binlog的语句并不是很明显的记录成多值insert语句,它的格式时
insert into table
set @1=
set @2=
...
set @n=
insert into table
set @1=
set @2=
...
set @n=
insert ...
;注意这里有一个分号‘;’,其实前面这一部分就相当于前面说的多值insert形式
然后接下来就重复上面的那种格式,也就是一个load data infile 拆成了多个多值insert语句。
前面说的是row格式记录的load data infile,那么对于statement是怎么样的呢?statement格式的binlog,它是这样记录的,binlog中还是同样的load data语句,但是在记录load data 语句之前,它会先将你master上这个load data 使用到的csv格式的文件拆分成多个部分,然后传到slave上(在mysql的tmpdir下),当然传这些csv格式的文件也会记录binlog event,然后最后真正的SQL语句形式就是load data local infile '/tmp/SQL_X_Y'这种形式(这里假设mysql的tmpdir是默认的/tmp),实际上这样很危险,比如tmpdir空间不够,那就会报错。不过从效率上来说两者可能差不多,因为statement格式的binlog也是拆分成了多个语句。
附:
(1)load data infile 和 load local data infile 在 innodb和MyISAM 同步方面的区别
对MyISAM引擎:
(1)对master服务器进行 ‘load’ 操作,
(2)在master上所操作的load.txt文件,会同步传输到slave上,并在tmp_dir 目录下生成 load.txt文件
master服务器插入了多少,就传给slave多少
(3)当master上的load操作完成后,传给slave的文件也结束时,
即:在slave上生成完整的 load.txt文件
此时,slave才开始从 load.txt 读取数据,并将数据插入到本地的表中
对innodb引擎:
(1)主数据库进行 ‘Load’ 操作
(2)主数据库操作完成后,才开始向slave传输 load.txt文件,
slave接受文件,,并在 tmp_dir 目录下生成 load.txt 文件
接受并生成完整的load.txt 后,才开始读取该文件,并将数据插入到本地表中
异常情况处理:
1)对MyISAM引擎
当数据库执行load,此时如果中断:
Slave端将报错,例如:
####################################################################
Query partially completed on the master (error on master: 1053) and was aborted.
There is a chance that your master is inconsistent at this point.
If you are sure that your master is ok,
run this query manually on the slave and then restart the slave with SET GLOBAL SQL_SLAVE_SKIP_COUNTER=1;
START SLAVE; . Query: 'LOAD DATA INFILE '/tmp/SQL_LOAD-2-1-3.data' IGNORE INTO TABLE `test_1`
FIELDS TERMINATED BY ',' ENCLOSED BY '' ESCAPED BY '\\' LINES TERMINATED BY '\n' (`id`, `name`, `address`)'
###########################################################################################
按照提示,在slave服务器上:
(1) 使用提示的load命令,将主服务器传输过来的load文件,在从服务器上执行
(2)让从服务器跳过错误。set global sql_slave_skip_counter=1;
(3)开启同步
2)对Innodb引擎
由于innodb是事务型的,所以会把load文件的整个操作当作一个事务来处理,
中途中断load操作,会导致回滚。
与此相关的一些参数:
max_binlog_cache_size----能够使用的最大cache内存大小。
当执行多语句事务时,max_binlog_cache_size如果不够大,
系统可能会报出“Multi-statement
transaction required more than 'max_binlog_cache_size' bytes of storage”的错误。
备注:以load data 来说,如果load的文件大小为512M,在执行load 的过程中,
所有产生的binlog会先写入binlog_cache_size,直到load data 的操作结束后,
最后,再由binlog_cache_size 写入二进制日志,如mysql-bin.0000008等。
所以此参数的大小必须大于所要load 的文件的大小,或者当前所要进行的事务操作的大小。
max_binlog_size------------Binlog最大值,一般设置为512M或1GB,但不能超过1GB。
该设置并不能严格控制Binlog的大小,尤其是Binlog遇到一根比较大事务时,
为了保证事务的完整性,不可能做切换日志的动作,只能将该事务的所有SQL都记录进
当前日志,直到事务结束
备注:有时能看到,binlog生成的大小,超过了设定的1G。这就是因为innodb某个事务的操作比较大,
不能做切换日志操作,就全部写入当前日志,直到事务结束。
(2)C# 批量插入Mysql
public void loadData(Connection connection)
{
long starTime = System.currentTimeMillis();
String sqlString = "load data local infile ? into table test";
PreparedStatement pstmt;
try {
pstmt = connection.prepareStatement(sqlString);
pstmt.setString(1, "tfacts_result");
pstmt.executeUpdate();
pstmt.close();
} catch (SQLException e) {
e.printStackTrace();
}
long endTime = System.currentTimeMillis();
System.out.println("program runs " + (endTime - starTime) + "ms");
}
public static void mysql_batch(string sqlStr,int point)
{
string sql = "insert into test(node1, node2, weight) values(?, ?, ?)";
Connection conn = getConn("mysql");
conn.setAutoCommit(false);
//clear(conn);
try
{
PreparedStatement prest = conn.prepareStatement(sql);
//long a = System.currentTimeMillis();
for (int x = 1; x
{
prest.setInt(1, x);
prest.setString(2, "张三");
prest.addBatch();
if (x % point == 0)
{
prest.executeBatch();
conn.commit();
}
}
prest.close();
//long b = System.currentTimeMillis();
//print("MySql批量插入10万条记录", a, b, point);
}
catch (Exception ex)
{
ex.printStackTrace();
}
finally
{
close(conn);
}
引用:
本文出自 “小何贝贝的技术空间” 博客,请务必保留此出处

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
