Home > Database > Mysql Tutorial > body text

MongoDB 聚合

WBOY
Release: 2016-06-07 17:45:19
Original
1115 people have browsed it

MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数, 复杂的可利用MapReduce做复杂数据分析. 1.count count返回集合中的文档数量 db.refactor.count() 不管集合有多大,都能很快的返回文档数量. 可以传递查询,MongoDB会

MongoDB除了基本的查询功能,还提供了很多强大的聚合工具,其中简单的可计算集合中的文档个数,

复杂的可利用MapReduce做复杂数据分析.

 

1.count

count返回集合中的文档数量

db.refactor.count()

不管集合有多大,都能很快的返回文档数量.

可以传递查询,MongoDB会计算查询结果的数量

db.refactor.count({"username":"refactor"})

但是增加查询条件会使count变慢.

 

2.distinct

distinct用来找出给定键的所有不同值.使用时必须指定集合和键.

如:

db.runCommand({"distinct":"refactor","key":"username"})

 

 3.group

group先选定分组所依据的键,MongoDB将会将集合依据选定键值的不同分成若干组.然后可以通过聚合每一组内的文档,

产生一个结果文档.

如:

db.runCommand(
{
  "group":
  {
    "ns":"refactor",
    "key":{"username":true},
    "initial":{"count":0},
    "$reduce":function(doc,prev)
    {
      prev.count++;
    },
    "condition":{"age":{"$gt":40}}
  }
}
)

   "ns":"refactor",

指定要进行分组的集合
    "key":{"username":true},

指定文档分组的依据,这里是username键,所有username键的值相等的被划分到一组,true为返回键username的值
    "initial":{"count":0},

每一组reduce函数调用的初始个数.每一组的所有成员都会使用这个累加器.
    "$reduce":function(doc,prev){...}

每个文档都对应的调用一次.系统会传递两个参数:当前文档和累加器文档.

"condition":{"age":{"$gt":40}}

这个age的值大于40的条件

 

4.使用完成器

完成器用于精简从数据库传到用户的数据.group命令的输出一定要能放在单个数据库相应中.

"finalize"附带一个函数,在数组结果传递到客户端之前被调用一次.

db.runCommand(
  {
    "group":
    {
      "ns":"refactor",
      "key":{"username":true},
      "initial":{"count":0},
      "$reduce":function(doc,prev)
      {
        prev.count++;
      },
      "finalize":function(doc)
      {
        doc.num=doc.count;
        delete doc.count;
      }
    }
  }
)

finalize能修改传递的参数也能返回新值.

 

5.将数组作为键使用

有些时候分组所依据的条件很复杂,不仅是一个键.比如要使用group计算每个类别有多篇博客文章.由于有很多作者,

给文章分类时可能不规律的使用了大小写.所以,如果要是按类别名来分组,最后"MongoDB"和"mongodb"就是不同的组.

为了消除这种大小写的影响,就要定义一个函数来确定文档所依据的键.

定义分组要用到$keyf

db.runCommand(
 {
  "group":
   {
    "ns":"refactor",
    "$keyf":function(doc){return {"username":doc.username.toLowerCase()}},
    "initial":{"count":0},
    "$reduce":function(doc,prev)
       {
        prev.count++;
       }
   }
 }
)

 

6.MapReduce

count,distinct,group能做的事情MapReduce都能做.它是一个可以轻松并行化到多个服务器的聚合方法.它会

拆分问题,再将各个部分发送到不同机器上,让每台机器完成一部分.当所有机器都完成时候,再把结果汇集起来形成

最终完整的结果.

MapReduce需要几个步骤:

1.映射,将操作映射到集合中的每个文档.这个操作要么什么都不做,要么 产生一个键和n个值.

2.洗牌,按照键分组,并将产生的键值组成列表放到对应键中.

3.化简,把列表中的值 化简 成一个单值,这个值被返回.

4.重新洗牌,直到每个键的列表只有一个值为止,这个值就是最终结果.

MapReduce的速度比group慢,group也很慢.在应用程序中,最好不要用MapReduce,可以在后台运行MapReduce

创建一个保存结果的集合,可以对这个集合进行实时查询.

 

找出集合中的所有键

MongoDB没有模式,所以并不知晓每个文档有多少个键.通常找到集合的所有键的做好方式是用MapReduce.

在映射阶段,想得到文档中的每个键.map函数使用emit 返回要处理的值.emit会给MapReduce一个键和一个值.

这里用emit将文档某个键的记数(count)返回({count:1}).我们为每个键单独记数,所以为文档中的每一个键调用一次emit,

this是当前文档的引用:

map=function(){
  for(var key in this)
  {
    emit(key,{count:1})
  }
};

这样返回了许许多多的{count:1}文档,每一个都与集合中的一个键相关.这种有一个或多个{count:1}文档组成的数组,

会传递给reduce函数.reduce函数有两个参数,一个是key,也就是emit返回的第一个值,另一个参数是数组,由一个或者多个

对应键的{count:1}文档组成.

reduce=function(key,emits){
  total=0;
  for(var i in emits){
    total+=emits[i].count;
  }
  return {count:total};
}

reduce要能被反复被调用,不论是映射环节还是前一个化简环节.reduce返回的文档必须能作为reduce的

第二个参数的一个元素.如x键映射到了3个文档{"count":1,id:1},{"count":1,id:2},{"count":1,id:3}

其中id键用于区别.MongoDB可能这样调用reduce:

>r1=reduce("x",[{"count":1,id:1},{"count":1,id:2}])

{count:2}

>r2=reduce("x",[{"count":1,id:3}])

{count:1}

>reduce("x",[r1,r2])

{count:3}

reduce应该能处理emit文档和其他reduce结果的各种集合.

如:

mr=db.runCommand(
  {
  "mapreduce":"refactor",
  "map":map,
  "reduce":reduce,
  "out":{inline:1}
  }
)

或:

db.refactor.mapReduce(map,reduce,{out:{inline:1}})

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template