mysql中百万级数据插入速度测试
100W的数据对于很多朋友来说算小菜了,但今天我就想到创建一个大量数据的测试环境,于是找了一下怎么插入100W条数据,我用的是20个字段。对比一下,首先是用 mysql 的存储过程弄的
100W的数据对于很多朋友来说算小菜了,但今天我就想到创建一个大量数据的测试环境,于是找了一下怎么插入100W条数据,我用的是20个字段。对比一下,首先是用 的存储过程弄的:
代码如下 | 复制代码 |
mysql>delimiter $ mysql> create procedure test() mysql>delimiter ; mysql> call test; |
结果我们看了用了58分钟,这也太费时差了吧
mysql> call test;
Query OK, 0 rows affected (58 min 30.83 sec)
非常耗时。
于是我又找了一个方法
先用PHP代码生成数据,再导入:
代码如下 | 复制代码 |
$sql="268t2t'0,262,268,'t0t '2342't'423423't'123123't'23423423't'2012-01-09 09:55:43't'upload/product/20111205153432_53211.jpg't'upload/product/thumb_20111205153432_53211.jpg'tNULLtNULLt38t'件't''t123t123t0"; |
然后再导入
代码如下 | 复制代码 |
LOAD DATA local INFILE 'e:/insert.sql' INTO TABLE tenmillion(`categ_id`, `categ_fid`, `SortPath`, `address`, `p_identifier`, `pro_specification`, `name`, `description`, `add_date`, `picture_url`, `thumb_url`, `shop_url`, `shop_thumb_url`, `brand_id`, `unit`, `square_meters_unit`, `market_price`, `true_price`, `square_meters_price`); |
结果不到1分钟,100万的数据就快速的导入了,
注意字段不再以逗号分割,以t分割,条记录以rn分割。结果我插入10次数据,100W平均只要1分钟搞定。
总结,在大数据量处理时我们最好利用第三方插件一实现数据备份或直接在服务器上进行备份,用mysql自带的工具有时确实不理想。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Big data structure processing skills: Chunking: Break down the data set and process it in chunks to reduce memory consumption. Generator: Generate data items one by one without loading the entire data set, suitable for unlimited data sets. Streaming: Read files or query results line by line, suitable for large files or remote data. External storage: For very large data sets, store the data in a database or NoSQL.

MySQL query performance can be optimized by building indexes that reduce lookup time from linear complexity to logarithmic complexity. Use PreparedStatements to prevent SQL injection and improve query performance. Limit query results and reduce the amount of data processed by the server. Optimize join queries, including using appropriate join types, creating indexes, and considering using subqueries. Analyze queries to identify bottlenecks; use caching to reduce database load; optimize PHP code to minimize overhead.

Backing up and restoring a MySQL database in PHP can be achieved by following these steps: Back up the database: Use the mysqldump command to dump the database into a SQL file. Restore database: Use the mysql command to restore the database from SQL files.

How to insert data into MySQL table? Connect to the database: Use mysqli to establish a connection to the database. Prepare the SQL query: Write an INSERT statement to specify the columns and values to be inserted. Execute query: Use the query() method to execute the insertion query. If successful, a confirmation message will be output.

One of the major changes introduced in MySQL 8.4 (the latest LTS release as of 2024) is that the "MySQL Native Password" plugin is no longer enabled by default. Further, MySQL 9.0 removes this plugin completely. This change affects PHP and other app

To use MySQL stored procedures in PHP: Use PDO or the MySQLi extension to connect to a MySQL database. Prepare the statement to call the stored procedure. Execute the stored procedure. Process the result set (if the stored procedure returns results). Close the database connection.

Creating a MySQL table using PHP requires the following steps: Connect to the database. Create the database if it does not exist. Select a database. Create table. Execute the query. Close the connection.

Oracle database and MySQL are both databases based on the relational model, but Oracle is superior in terms of compatibility, scalability, data types and security; while MySQL focuses on speed and flexibility and is more suitable for small to medium-sized data sets. . ① Oracle provides a wide range of data types, ② provides advanced security features, ③ is suitable for enterprise-level applications; ① MySQL supports NoSQL data types, ② has fewer security measures, and ③ is suitable for small to medium-sized applications.
