MySQL 字符串模式匹配 扩展正则表达式模式匹配
MySQL提供标准的SQL模式匹配,以及一种基于象Unix实用程序如vi、grep和sed的扩展正则表达式模式匹配的格式。
标准的SQL模式匹配
SQL的模式匹配允许你使用“_”匹配任何单个字符,而“%”匹配任意数目字符(包括零个字符)。在 MySQL中,SQL的模式缺省是忽略大小写的。下面显示一些例子。注意在你使用SQL模式时,你不能使用=或!=;而使用LIKE或NOT LIKE比较操作符。
例如,在表pet中,为了找出以“b”开头的名字:
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+
为了找出以“fy”结尾的名字:
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+
为了找出包含一个“w”的名字:
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
+----------+-------+---------+------+------------+------------+
为了找出包含正好5个字符的名字,使用“_”模式字符:
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+
MySQL提供标准的SQL模式匹配,以及一种基于象Unix实用程序如vi、grep和sed的扩展正则表达式模式匹配的格式。
扩展正则表达式模式匹配
由MySQL提供的模式匹配的其他类型是使用扩展正则表达式。当你对这类模式进行匹配测试时,使用REGEXP和NOT REGEXP操作符(或RLIKE和NOT RLIKE,它们是同义词)。
扩展正则表达式的一些字符是:
“.”匹配任何单个的字符。
一个字符类“[...]”匹配在方括号内的任何字符。例如,“[abc]”匹配“a”、“b”或“c”。为了命名字符的一个范围,使用一个“-”。
“[a-z]”匹配任何小写字母,而“[0-9]”匹配任何数字。
“ * ”匹配零个或多个在它前面的东西。例如,“x*”匹配任何数量的“x”字符,“[0-9]*”匹配的任何数量的数字,而“.*”匹配任何数量的任何东西。
正则表达式是区分大小写的,但是如果你希望,你能使用一个字符类匹配两种写法。例如,“[aA]”匹配小写或大写的“a”而“[a-zA-Z]”匹配两种写法的任何字母。
如果它出现在被测试值的任何地方,模式就匹配(只要他们匹配整个值,SQL模式匹配)。
为了定位一个模式以便它必须匹配被测试值的开始或结尾,在模式开始处使用“^”或在模式的结尾用“$”。
为了说明扩展正则表达式如何工作,上面所示的LIKE查询在下面使用REGEXP重写:
为了找出以“b”开头的名字,使用“^”匹配名字的开始并且“[bB]”匹配小写或大写的“b”:
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+
为了找出以“fy”结尾的名字,使用“$”匹配名字的结尾:
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+
为了找出包含一个“w”的名字,使用“[wW]”匹配小写或大写的“w”:
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
| Whistler | Gwen | bird | NULL | 1997-12-09 | NULL |
+----------+-------+---------+------+------------+------------+
既然如果一个正规表达式出现在值的任何地方,其模式匹配了,就不必再先前的查询中在模式的两方面放置一个通配符以使得它匹配整个值,
就像如果你使用了一个SQL模式那样。
为了找出包含正好5个字符的名字,使用“^”和“$”匹配名字的开始和结尾,和5个“.”实例在两者之间:
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+
你也可以使用“{n}”“重复n次”操作符重写先前的查询:
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+
总结
本介绍了有关字符串模式匹配的有关知识。标准的SQL模式匹配是SQL语言的标准,可以被其它关系数据库系统接受。扩展正规表达式模式匹配
是根据Unix系统的标准开发了,一般只可使用在MySQL上,但是其功能要比标准的SQL模式匹配更强。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The main reasons why you cannot log in to MySQL as root are permission problems, configuration file errors, password inconsistent, socket file problems, or firewall interception. The solution includes: check whether the bind-address parameter in the configuration file is configured correctly. Check whether the root user permissions have been modified or deleted and reset. Verify that the password is accurate, including case and special characters. Check socket file permission settings and paths. Check that the firewall blocks connections to the MySQL server.

In MySQL database, the relationship between the user and the database is defined by permissions and tables. The user has a username and password to access the database. Permissions are granted through the GRANT command, while the table is created by the CREATE TABLE command. To establish a relationship between a user and a database, you need to create a database, create a user, and then grant permissions.

When MySQL modifys table structure, metadata locks are usually used, which may cause the table to be locked. To reduce the impact of locks, the following measures can be taken: 1. Keep tables available with online DDL; 2. Perform complex modifications in batches; 3. Operate during small or off-peak periods; 4. Use PT-OSC tools to achieve finer control.

Data Integration Simplification: AmazonRDSMySQL and Redshift's zero ETL integration Efficient data integration is at the heart of a data-driven organization. Traditional ETL (extract, convert, load) processes are complex and time-consuming, especially when integrating databases (such as AmazonRDSMySQL) with data warehouses (such as Redshift). However, AWS provides zero ETL integration solutions that have completely changed this situation, providing a simplified, near-real-time solution for data migration from RDSMySQL to Redshift. This article will dive into RDSMySQL zero ETL integration with Redshift, explaining how it works and the advantages it brings to data engineers and developers.

1. Use the correct index to speed up data retrieval by reducing the amount of data scanned select*frommployeeswherelast_name='smith'; if you look up a column of a table multiple times, create an index for that column. If you or your app needs data from multiple columns according to the criteria, create a composite index 2. Avoid select * only those required columns, if you select all unwanted columns, this will only consume more server memory and cause the server to slow down at high load or frequency times For example, your table contains columns such as created_at and updated_at and timestamps, and then avoid selecting * because they do not require inefficient query se

MySQL has a free community version and a paid enterprise version. The community version can be used and modified for free, but the support is limited and is suitable for applications with low stability requirements and strong technical capabilities. The Enterprise Edition provides comprehensive commercial support for applications that require a stable, reliable, high-performance database and willing to pay for support. Factors considered when choosing a version include application criticality, budgeting, and technical skills. There is no perfect option, only the most suitable option, and you need to choose carefully according to the specific situation.

MySQL cannot run directly on Android, but it can be implemented indirectly by using the following methods: using the lightweight database SQLite, which is built on the Android system, does not require a separate server, and has a small resource usage, which is very suitable for mobile device applications. Remotely connect to the MySQL server and connect to the MySQL database on the remote server through the network for data reading and writing, but there are disadvantages such as strong network dependencies, security issues and server costs.

MySQL database performance optimization guide In resource-intensive applications, MySQL database plays a crucial role and is responsible for managing massive transactions. However, as the scale of application expands, database performance bottlenecks often become a constraint. This article will explore a series of effective MySQL performance optimization strategies to ensure that your application remains efficient and responsive under high loads. We will combine actual cases to explain in-depth key technologies such as indexing, query optimization, database design and caching. 1. Database architecture design and optimized database architecture is the cornerstone of MySQL performance optimization. Here are some core principles: Selecting the right data type and selecting the smallest data type that meets the needs can not only save storage space, but also improve data processing speed.
