Python编程中归并排序算法的实现步骤详解
基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排序。
归并操作过程:
申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
设定两个指针,最初位置分别为两个已经排序序列的起始位置
比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
重复步骤3直到某一指针达到序列尾
将另一序列剩下的所有元素直接复制到合并序列尾
上述说法是理论表述,下面用一个实际例子说明:
例如一个无序数组
[6,2,3,1,7]
首先将这个数组通过递归方式进行分解,直到:
[6],[2],[3],[1],[7]
然后开始合并排序,也是用递归的方式进行:
两个两个合并排序,得到:
[2,6],[1,3],[7]
上一步中,其实也是按照本步骤的方式合并的,只不过由于每个list中一个数,不能完全显示过程。下面则可以完全显示过程。
初始:
a = [2,6] b = [1,3] c = []
第1步,顺序从a,b中取出一个数字:2,1 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [2,6] b = [3] c = [1]
第2步,继续从a,b中按照顺序取出数字,也就是重复上面步骤,这次是:2,3 比较大小后放入c中,并将该数字从原list中删除,结果是:
a = [6] b = [3] c = [1,2]
第3步,再重复前边的步骤,结果是:
a = [6] b = [] c = [1,2,3]
最后一步,将6追加到c中,结果形成了:
a = [] b = [] c = [1,2,3,6]
通过反复应用上面的流程,实现[1,2,3,6]与[7]的合并
最终得到排序结果
[1,2,3,6,7]
本文列举了三种python的实现方法:
方法1:将前面讲述的过程翻译过来了,略先拙笨
#! /usr/bin/env python #coding:utf-8 def merge_sort(seq): if len(seq) ==1: return seq else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) i = 0 #left 计数 j = 0 #right 计数 k = 0 #总计数 while i < len(left) and j < len(right): if left[i] < right [j]: seq[k] = left[i] i +=1 k +=1 else: seq[k] = right[j] j +=1 k +=1 remain = left if i<j else right r = i if remain ==left else j while r<len(remain): seq[k] = remain[r] r +=1 k +=1 return seq
方法2:在按照顺序取数值方面,应用了list.pop()方法,代码更紧凑简洁
#! /usr/bin/env python #coding:utf-8 def merge_sort(lst): #此方法来自维基百科 if len(lst) <= 1: return lst def merge(left, right): merged = [] while left and right: merged.append(left.pop(0) if left[0] <= right[0] else right.pop(0)) while left: merged.append(left.pop(0)) while right: merged.append(right.pop(0)) return merged middle = int(len(lst) / 2) left = merge_sort(lst[:middle]) right = merge_sort(lst[middle:]) return merge(left, right)
方法3:原来在python的模块heapq中就提供了归并排序的方法,只要将分解后的结果导入该方法即可。
#! /usr/bin/env python #coding:utf-8 from heapq import merge def merge_sort(seq): if len(seq) <= 1: return m else: middle = len(seq)/2 left = merge_sort(seq[:middle]) right = merge_sort(seq[middle:]) return list(merge(left, right)) #heapq.merge() if __name__=="__main__": seq = [1,3,6,2,4] print merge_sort(seq)

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML can be converted to images by using an XSLT converter or image library. XSLT Converter: Use an XSLT processor and stylesheet to convert XML to images. Image Library: Use libraries such as PIL or ImageMagick to create images from XML data, such as drawing shapes and text.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.
