python脚本监控docker容器
本文实例为大家分享了python脚本监控docker容器的方法,供大家参考,具体内容如下
脚本功能:
1、监控CPU使用率
2、监控内存使用状况
3、监控网络流量
具体代码:
#!/usr/bin/env python # --*-- coding:UTF-8 --*-- import sys import tab import re import os import time from docker import Client import commands keys_container_stats_list = ['blkio_stats', 'precpu_stats', 'Network', 'read', 'memory_stats', 'cpu_stats'] merit_list=['usage','limit','mem_use_percent','total_cpu_usage','system_cpu_usage','cpu_usage_percent','rx_bytes','tx_bytes'] returnval = None def start(container_name): global container_stats conn=Client(base_url='unix://run/docker.sock',version='1.19') generator=conn.stats(container_name) try: container_stats=eval(generator.next()) except NameError,error_msg: pass # print error_msg container_stats=eval(generator.next()) finally: conn.close() def monitor_docker(monitor_item,merit): if merit == 'mem_use_percent': start(container_name) mem_usage = container_stats['memory_stats']['usage'] mem_limit = container_stats['memory_stats']['limit'] returnval = round(float(mem_usage) / float(mem_limit),2) print returnval elif merit == 'system_cpu_usage': start(container_name) first_result = container_stats['cpu_stats']['system_cpu_usage'] start(container_name) second_result = container_stats['cpu_stats']['system_cpu_usage'] returnval = second_result - first_result print returnval elif merit == 'total_cpu_usage': start(container_name) first_result = container_stats['cpu_stats']['cpu_usage']['total_usage'] start(container_name) second_result = container_stats['cpu_stats']['cpu_usage']['total_usage'] returnval = second_result - first_result print returnval elif merit == 'cpu_usage_percent': start(container_name) system_use=container_stats['cpu_stats']['system_cpu_usage'] total_use=container_stats['cpu_stats']['cpu_usage']['total_usage'] cpu_count=len(container_stats['cpu_stats']['cpu_usage']['percpu_usage']) returnval = round((float(total_use)/float(system_use))*cpu_count*100.0,2) print returnval elif merit == 'rx_bytes': command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' ''' result_one = commands.getoutput(command) time.sleep(1) command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $2}' | awk -F ':' '{print $2}' ''' result_second = commands.getoutput(command) returnval = round((int(result_second) - int(result_one))/1024,2) print returnval elif merit == 'tx_bytes': command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' ''' result_one = commands.getoutput(command) time.sleep(1) command='''docker exec -it api1 ifconfig eth1 | grep "bytes" | awk '{print $6}' | awk -F ':' '{print $2}' ''' result_second = commands.getoutput(command) returnval = round((int(result_second) - int(result_one))/1024,2) print returnval if __name__ == '__main__': command='''docker ps | awk '{print $NF}'| grep -v "NAMES"''' str=commands.getoutput(command) container_counts_list=str.split('\n') if sys.argv[1] not in container_counts_list: print container_counts_list print "你输入的容器名称错误,请重新执行脚本,并输入上述正确的容器名称." sys.exit(1) else: container_name = sys.argv[1] if sys.argv[2] not in keys_container_stats_list: print keys_container_stats_list print '你输入的容器监控项不在监控范围,请重新执行脚本,并输入上述正确的监控项.' sys.exit(1) else: monitor_item = sys.argv[2] if sys.argv[3] not in merit_list: print merit_list print "你输入的容器监控明细详细不在监控范围内,请重新执行脚本,并输入上述正确的明细监控指标." else: merit = sys.argv[3] monitor_docker(monitor_item,merit)
以上就是python脚本监控docker容器的全部代码,希望对大家的学习有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

PHP is mainly procedural programming, but also supports object-oriented programming (OOP); Python supports a variety of paradigms, including OOP, functional and procedural programming. PHP is suitable for web development, and Python is suitable for a variety of applications such as data analysis and machine learning.

Python is more suitable for beginners, with a smooth learning curve and concise syntax; JavaScript is suitable for front-end development, with a steep learning curve and flexible syntax. 1. Python syntax is intuitive and suitable for data science and back-end development. 2. JavaScript is flexible and widely used in front-end and server-side programming.

PHP is suitable for web development and rapid prototyping, and Python is suitable for data science and machine learning. 1.PHP is used for dynamic web development, with simple syntax and suitable for rapid development. 2. Python has concise syntax, is suitable for multiple fields, and has a strong library ecosystem.

PHP originated in 1994 and was developed by RasmusLerdorf. It was originally used to track website visitors and gradually evolved into a server-side scripting language and was widely used in web development. Python was developed by Guidovan Rossum in the late 1980s and was first released in 1991. It emphasizes code readability and simplicity, and is suitable for scientific computing, data analysis and other fields.

Running Python code in Notepad requires the Python executable and NppExec plug-in to be installed. After installing Python and adding PATH to it, configure the command "python" and the parameter "{CURRENT_DIRECTORY}{FILE_NAME}" in the NppExec plug-in to run Python code in Notepad through the shortcut key "F6".

Visual Studio Code (VSCode) is a cross-platform, open source and free code editor developed by Microsoft. It is known for its lightweight, scalability and support for a wide range of programming languages. To install VSCode, please visit the official website to download and run the installer. When using VSCode, you can create new projects, edit code, debug code, navigate projects, expand VSCode, and manage settings. VSCode is available for Windows, macOS, and Linux, supports multiple programming languages and provides various extensions through Marketplace. Its advantages include lightweight, scalability, extensive language support, rich features and version

Golang is better than Python in terms of performance and scalability. 1) Golang's compilation-type characteristics and efficient concurrency model make it perform well in high concurrency scenarios. 2) Python, as an interpreted language, executes slowly, but can optimize performance through tools such as Cython.

Python is easier to learn and use, while C is more powerful but complex. 1. Python syntax is concise and suitable for beginners. Dynamic typing and automatic memory management make it easy to use, but may cause runtime errors. 2.C provides low-level control and advanced features, suitable for high-performance applications, but has a high learning threshold and requires manual memory and type safety management.
