python正则表达式之作业计算器
作业:计算器开发
实现加减乘除及拓号优先级解析
用户输入 1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )等类似公式后,必须自己解析里面的(),+,-,*,/符号和公式,运算后得出结果,结果必须与真实的计算器所得出的结果一致
一、说明:
有一点bug就是不能计算幂次方,如:'6**6'会报错
该计算器思路:
1、没用使用递归,先找出并计算所有括号里的公式,再计算乘除和加减
2、所有的数字都认为是浮点型操作,以此来保留小数
使用技术:
1、正则表达式
2、tkinter
二、流程图:
三、代码如下:
#!/usr/bin/env python3 #antuor:Alan import re from functools import reduce from tkinter import * '''处理特殊-号运算''' def minus_operation(expresstion): minus_operators = re.split("-",expresstion) calc_list = re.findall("[0-9]",expresstion) if minus_operators[0] =="": calc_list[0] = '-%s' % calc_list[0] res = reduce(lambda x,y:float(x)-float(y),calc_list) print(">>>>>>>>>>>>>>减号[%s]运算结果:" % expresstion,res) return res '''reduce()对sequence连续使用function, 如果不给出initial, 则第一次调用传递sequence的两个元素, 以后把前一次调用的结果和sequence的下一个元素传递给function''' '''处理双运算符号''' def del_duplicates(expresstion): expresstion = expresstion.replace("++","+") expresstion = expresstion.replace("--","-") expresstion = expresstion.replace("+-","-") expresstion = expresstion.replace("--","+") expresstion = expresstion.replace('- -',"+") e return expresstion '''*/运算函数''' def mutiply_dividend(expresstion): calc_list = re.split("[*/]",expresstion) #用* or /分割公式 operators = re.findall("[*/]",expresstion) #找出所有*和/号 res = None for index,i in enumerate(calc_list): if res: if operators[index-1] =='*': res *= float(i) elif operators[index-1] =='/': res /=float(i) else : res = float(i) procession0 = "[%s]运算结果=" % expresstion,res final_result.insert(END,procession0) #插入窗体 print(procession0) return res '''处理运算符号顺序混乱情况''' def special_features(plus_and_minus_operators,multiply_and_dividend): for index,i in enumerate(multiply_and_dividend): i = i.strip() if i.endswith("*") or i.endswith("/"): multiply_and_dividend[index] = multiply_and_dividend[index] + plus_and_minus_operators[index] + multiply_and_dividend[index+1] del multiply_and_dividend[index+1] del plus_and_minus_operators[index] return plus_and_minus_operators,multiply_and_dividend def minus_special(operator_list,calc_list): for index,i in enumerate(calc_list): if i =='': calc_list[index+1] = i + calc_list[index+1].strip() '''运算除了()的公式+-*/''' def figure_up(expresstion): expresstion = expresstion.strip("()") #去掉外面括号 expresstion = del_duplicates(expresstion) #去掉重复+-号 plus_and_minus_operators = re.findall("[+-]",expresstion) multiply_and_dividend = re.split("[+-]",expresstion) if len(multiply_and_dividend[0].strip()) ==0: multiply_and_dividend[1] = plus_and_minus_operators[0] + multiply_and_dividend[1] del multiply_and_dividend[0] del plus_and_minus_operators[0] plus_and_minus_operators,multiply_and_dividend = special_features(plus_and_minus_operators,multiply_and_dividend) for index,i in enumerate(multiply_and_dividend): if re.search("[*/]",i): sub_res = mutiply_dividend(i) multiply_and_dividend[index] = sub_res print(multiply_and_dividend,plus_and_minus_operators) #计算 final_res = None for index,item in enumerate(multiply_and_dividend): if final_res: if plus_and_minus_operators[index-1] == '+': final_res += float(item) elif plus_and_minus_operators[index-1] == '-': final_res -= float(item) else: final_res = float(item) procession = '[%s]计算结果:' % expresstion,final_res final_result.insert(END,procession) #插入窗体 print(procession) return final_res """主函数:运算逻辑:先计算拓号里的值,算出来后再算乘除,再算加减""" def calculate(): expresstion = expresstions.get() #获取输入框值 flage = True calculate_res = None #初始化计算结果为None while flage: m = re.search("\([^()]*\)",expresstion) #先找最里层的() # pattern = re.compile(r"\([^()]*\)") # m = pattern.match(expresstion) if m: sub_res = figure_up(m.group()) #运算()里的公式 expresstion = expresstion.replace(m.group(),str(sub_res)) #运算完毕把结果替换掉公式 else: print('---------------括号已经计算完毕--------------') procession1 = "最终计算结果:",figure_up(expresstion) final_result.insert(END,procession1) #插入窗体 print('\033[31m最终计算结果:',figure_up(expresstion)) flage = False if __name__=="__main__": # res = calculate("1 - 2 * ( (60-30 +(-40/5) * (9-2*5/3 + 7 /3*99/4*2998 +10 * 568/14 )) - (-4*3)/ (16-3*2) )") window = Tk() ###创建窗体 window.title('计算器') ###命名窗体 frame1 = Frame(window) ###框架1 frame1.pack() ###放置 frame2 = Frame(window) ###框架2 frame2.pack() ###放置 lable = Label(frame1,text = "请输入公式:") ###文字标签 lable.pack() expresstions = StringVar() ###输入框属性,字符串 entryname = Entry(frame1,textvariable = expresstions) ###文本输入框 bt_get_expresstions = Button(frame1,text = "提交",command = calculate) ###按钮挂件 bt_get_expresstions.pack() entryname.pack() lable.grid(row =1,column =1) ###位置 entryname.grid(row=1,column =2) bt_get_expresstions.grid(row =1,column =3) final_result = Text(frame2) ###计算结果显示框 final_result.tag_config("here", background="yellow", foreground="blue") final_result.pack() window.mainloop() ###事件循环
以上就是本文的全部内容,希望对大家的学习有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

Python regular expression is a powerful matching tool that can help us quickly identify and replace text, styles and formats in Word file processing. This article will introduce how to use Python regular expressions for Word file processing. 1. Install the Python-docx library Python-docx is a functional library for processing Word documents in Python. You can use it to quickly read, modify, create and save Word documents. Before using Python-docx, you need to ensure

Python regular expressions are a powerful tool that help us perform precise and efficient matching and searching in text data. Regular expressions are also extremely useful in the processing of numbers and amounts, and can accurately find and extract the number and amount information. This article will introduce how to use Python regular expressions to process numbers and amounts, helping readers better cope with actual data processing tasks. 1. Process numbers 1. Match integers and floating-point numbers. In regular expressions, to match integers and floating-point numbers, you can use d+ for matching.

In container orchestration, we often need to filter, match, and replace some information. Python provides regular expressions, a powerful tool that can help us complete these operations. This article will introduce how to use Python regular expressions for container orchestration, including basic knowledge of regular expressions, how to use the Pythonre module, and some common regular expression applications. 1. Basic knowledge of regular expressions Regular expression (RegularExpression) refers to a text pattern, used

Python regular expressions are a powerful tool for processing text data. In natural language processing, word segmentation is an important task, which separates a text into individual words. In Python, we can use regular expressions to complete the task of word segmentation. The following will use Python3 as an example to introduce how to use regular expressions for word segmentation. Import the re module The re module is Python's built-in regular expression module. You need to import the module first. import definition text

Python is a widely used high-level programming language with a rich set of libraries and tools that make content extraction easier and more efficient. Among them, regular expressions are a very important tool, and Python provides the re module to use regular expressions for content extraction. This article will introduce you to the specific steps on how to use Python regular expressions for content extraction. 1. Understand the basic syntax of regular expressions. Before using Python regular expressions for content extraction, you first need to understand the basic syntax of regular expressions.

Python regular expression is a string processing tool based on pattern matching, which can help us extract the required information from text quickly and efficiently. In data structures and algorithms, regular expressions can be used to implement text matching, replacement, segmentation and other functions, providing more powerful support for our programming. This article will introduce how to use Python regular expressions for data structures and algorithms. 1. Basic knowledge of regular expressions Before starting, let’s first understand some basic knowledge of regular expressions: Character set: represented by square brackets,

In daily coding, we often need to modify and reconstruct the code to increase the readability and maintainability of the code. One of the important tools is regular expressions. This article will introduce some common techniques on how to use Python regular expressions for code refactoring. 1. Find and Replace One of the most commonly used functions of regular expressions is find and replace. Suppose we need to replace all print statements in the code with logging statements. We can use the following regular expression to find it: prints*((.

In software development, code aesthetics and user experience are often ignored, which causes many software problems in actual use. Python, as a powerful programming language, provides regular expressions as a powerful tool to help us solve these problems. This article will introduce how to use Python regular expressions for code aesthetics and user experience. 1. Introduction to Python regular expressions Regular expressions are a language that describes text patterns and can be used to match, find, replace and split text. Python’s re module provides
