举例讲解Python设计模式编程中对抽象工厂模式的运用
抽象工厂模式:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。
优点:易于交换“产品系列”,只要更改相应的工厂即可。
缺点:建立产品的时候很繁琐,需要增加和修改很多东西。
优化1:为了避免客户端有过多的逻辑判断,可以封装出一个简单工厂类来生成产品类。
优化2:为了减少简单工厂类里面的逻辑判断,可以采用“反射”机制,直接根据外部的配置文件读取出需要使用产品类的信息。
#encoding=utf-8 # #by panda #抽象工厂模式 def printInfo(info): print unicode(info, 'utf-8').encode('gbk') #抽象产品A:user表 class IUser(): def Insert(self): pass def GetUser(self): pass #sqlserver实现的User class SqlserverUser(IUser): def Insert(self): printInfo("在SQL Server中给User表增加一条记录") def GetUser(self): printInfo("在SQL Server中得到User表的一条记录") #Access实现的User class AccessUser(IUser): def Insert(self): printInfo("在Access中给User表增加一条记录") def GetUser(self): printInfo("在Access中得到User表一条记录") #抽象产品B:部门表 class IDepartment(): def Insert(self): pass def GetUser(self): pass #sqlserver实现的Department class SqlserverDepartment(IUser): def Insert(self): printInfo("在SQL Server中给Department表增加一条记录") def GetUser(self): printInfo("在SQL Server中得到Department表的一条记录") #Access实现的Department class AccessDepartment(IUser): def Insert(self): printInfo("在Access中给Department表增加一条记录") def GetUser(self): printInfo("在Access中得到Department表一条记录") #抽象工厂 class IFactory(): def CreateUser(self): pass def CreateDepartment(self): pass #sql server工厂 class SqlServerFactory(IFactory): def CreateUser(self): return SqlserverUser() def CreateDepartment(self): return SqlserverDepartment() #access工厂 class AccessFactory(IFactory): def CreateUser(self): return AccessUser() def CreateDepartment(self): return AccessDepartment() #优化一:采用一个简单工厂类,封装逻辑判断操作 class DataAccess(): # db = "Sqlserver" db = "Access" @staticmethod def CreateUser(): if (DataAccess.db == "Sqlserver"): return SqlserverUser() elif(DataAccess.db == "Access"): return AccessUser() @staticmethod def CreateDepartment(): if (DataAccess.db == "Sqlserver"): return SqlserverDepartment() elif(DataAccess.db == "Access"): return AccessDepartment() #优化二:采用反射机制,避免使用太多判断 ##以下信息可以从配置文件中获取 DBType = 'Sqlserver' #'Access' DBTab_User = 'User' DBTab_Department = 'Department' class DataAccessPro(): # db = "Sqlserver" db = "Access" @staticmethod def CreateUser(): funName = DBType + DBTab_User return eval(funName)() #eval 将其中的字符串转化为python表达式 @staticmethod def CreateDepartment(): funName = DBType + DBTab_Department return eval(funName)() def clientUI(): printInfo("\n--------抽象工厂方法--------") factory = SqlServerFactory() iu = factory.CreateUser() iu.Insert() iu.GetUser() id = factory.CreateDepartment() id.Insert() id.GetUser() printInfo("\n--抽象工厂方法+简单工厂方法--") iu = DataAccess.CreateUser() iu.Insert() iu.GetUser() id = DataAccess.CreateDepartment() id.Insert() id.GetUser() printInfo("\n-抽象工厂方法+简单工厂方法+反射-") iu = DataAccessPro.CreateUser() iu.Insert() iu.GetUser() id = DataAccessPro.CreateDepartment() id.Insert() id.GetUser() return if __name__ == '__main__': clientUI();
类图:
工厂模式和抽象工厂模式的区别:工厂模式是在派生类中定义一个工厂的抽象接口,然后基类负责创建具体对象;抽象工厂模式是维护一个产品家族,由基类定义产品被生产的方法,客户根据派生类的接口进行开发。
实例:人民群众喜闻乐见的披萨店例子这里又可以搬出来了,这次我们根据抽象工厂模式的特点,用不同原材料制作不同口味的披萨,创建不同原材料的工厂,不同实体店做出口味不同的披萨。创建一个产品家族(Dough、Sauce、Cheese和Clam)的抽象类型(PizzaIngredientFactory),这个类型的子类(NYPizzaIngredientFactory和ChicagoPizzaIngredientFactory)定义了产品被产生的方法。
代码:
#!/usr/bin/python # -*- coding:utf-8 -*- import sys reload(sys) sys.setdefaultencoding('utf-8') ''' 披萨 ''' class Pizza: name = "" dough = None sauce = None cheese = None clam = None def prepare(self): pass def bake(self): print "烘烤25分钟在350。".decode('utf-8') def cut(self): print "切割成对角线切片。".decode('utf-8') def box(self): print "放在官方的盒子中。".decode('utf-8') def get_name(self): return self.name def set_name(self, name): self.name = name def to_string(self): string = "%s:\n" % self.name string += " 面团: %s\n" % self.dough.to_string() if self.dough else "" string += " 酱汁: %s\n" % self.sauce.to_string() if self.sauce else "" string += " 奶酪: %s\n" % self.cheese.to_string() if self.cheese else "" string += " 文蛤: %s\n" % self.clam.to_string() if self.clam else "" return string ''' 什么类别的披萨 ''' class CheesePizza(Pizza): def __init__(self, ingredient_factory): self.ingredient_factory = ingredient_factory def prepare(self): print "准备: %s" % self.name self.dough = self.ingredient_factory.create_dough() self.sauce = self.ingredient_factory.create_sauce() self.cheese = self.ingredient_factory.create_cheese() class ClamPizza(Pizza): def __init__(self, ingredient_factory): self.ingredient_factory = ingredient_factory def prepare(self): print "准备: %s" % self.name self.dough = self.ingredient_factory.create_dough() self.sauce = self.ingredient_factory.create_sauce() self.clam = self.ingredient_factory.create_clam() ''' 披萨店 ''' class PizzaStore: def order_pizza(self, pizza_type): self.pizza = self.create_pizza(pizza_type) self.pizza.prepare() self.pizza.bake() self.pizza.cut() self.pizza.box() return self.pizza def create_pizza(self, pizza_type): pass ''' 纽约披萨实体店1 ''' class NYPizzaStore(PizzaStore): def create_pizza(self, pizza_type): ingredient_factory = NYPizzaIngredientFactory() if pizza_type == "cheese": pizza = CheesePizza(ingredient_factory) pizza.set_name("纽约风格芝士披萨".decode('utf-8')) elif pizza_type == "clam": pizza = ClamPizza(ingredient_factory) pizza.set_name("纽约风格文蛤披萨".decode('utf-8')) else: pizza = None return pizza ''' 芝加哥披萨实体店2 ''' class ChicagoPizzaStore(PizzaStore): def create_pizza(self, pizza_type): ingredient_factory = ChicagoPizzaIngredientFactory() if pizza_type == "cheese": pizza = CheesePizza(ingredient_factory) pizza.set_name("芝加哥风格芝士披萨".decode('utf-8')) elif pizza_type == "clam": pizza = ClamPizza(ingredient_factory) pizza.set_name("芝加哥风格文蛤披萨".decode('utf-8')) else: pizza = None return pizza ''' 生产披萨的工厂 ''' class PizzaIngredientFactory: def create_dough(self): pass def create_sauce(self): pass def create_cheese(self): pass def create_clam(self): pass ''' 生产披萨的实体工厂1 ''' class NYPizzaIngredientFactory(PizzaIngredientFactory): def create_dough(self): return ThinDough() def create_sauce(self): return MarinaraSauce() def create_cheese(self): return FreshCheese() def create_clam(self): return FreshClam() ''' 生产披萨的实体工厂2 ''' class ChicagoPizzaIngredientFactory(PizzaIngredientFactory): def create_dough(self): return ThickDough() def create_sauce(self): return MushroomSauce() def create_cheese(self): return BlueCheese() def create_clam(self): return FrozenClam() class Dough: def to_string(self): pass class ThinDough(Dough): def to_string(self): return "薄的面团" class ThickDough(Dough): def to_string(self): return "厚的生面团" class Sauce: def to_string(self): pass class MarinaraSauce(Sauce): def to_string(self): return "番茄酱" class MushroomSauce(Sauce): def to_string(self): return "蘑菇酱" class Cheese: def to_string(self): pass class FreshCheese(Cheese): def to_string(self): return "新鲜的奶酪" class BlueCheese(Cheese): def to_string(self): return "蓝纹奶酪" class Clam: def to_string(self): pass class FreshClam(Clam): def to_string(self): return "新鲜的文蛤" class FrozenClam(Clam): def to_string(self): return "冷冻的文蛤" if __name__ == "__main__": # 创建了两个披萨实体店 ny_store = NYPizzaStore() chicago_store = ChicagoPizzaStore() # 在第一个披萨对象中订购了一个cheese风味的披萨 pizza = ny_store.order_pizza("cheese") print pizza.to_string() print "迈克订购了一个 %s" % pizza.get_name() print pizza = chicago_store.order_pizza("clam") print pizza.to_string() print "约翰订购了一个%s" % pizza.get_name()
结果:
准备: 纽约风格芝士披萨 烘烤25分钟在350。 切割成对角线切片。 放在官方的盒子中。 纽约风格芝士披萨: 面团: 薄的面团 酱汁: 番茄酱 奶酪: 新鲜的奶酪 迈克订购了一个 纽约风格芝士披萨 准备: 芝加哥风格文蛤披萨 烘烤25分钟在350。 切割成对角线切片。 放在官方的盒子中。 芝加哥风格文蛤披萨: 面团: 厚的生面团 酱汁: 蘑菇酱 文蛤: 冷冻的文蛤 约翰订购了一个芝加哥风格文蛤披萨

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



You can learn basic programming concepts and skills of Python within 2 hours. 1. Learn variables and data types, 2. Master control flow (conditional statements and loops), 3. Understand the definition and use of functions, 4. Quickly get started with Python programming through simple examples and code snippets.

Python is widely used in the fields of web development, data science, machine learning, automation and scripting. 1) In web development, Django and Flask frameworks simplify the development process. 2) In the fields of data science and machine learning, NumPy, Pandas, Scikit-learn and TensorFlow libraries provide strong support. 3) In terms of automation and scripting, Python is suitable for tasks such as automated testing and system management.

It is impossible to view MongoDB password directly through Navicat because it is stored as hash values. How to retrieve lost passwords: 1. Reset passwords; 2. Check configuration files (may contain hash values); 3. Check codes (may hardcode passwords).

As a data professional, you need to process large amounts of data from various sources. This can pose challenges to data management and analysis. Fortunately, two AWS services can help: AWS Glue and Amazon Athena.

The steps to start a Redis server include: Install Redis according to the operating system. Start the Redis service via redis-server (Linux/macOS) or redis-server.exe (Windows). Use the redis-cli ping (Linux/macOS) or redis-cli.exe ping (Windows) command to check the service status. Use a Redis client, such as redis-cli, Python, or Node.js, to access the server.

To read a queue from Redis, you need to get the queue name, read the elements using the LPOP command, and process the empty queue. The specific steps are as follows: Get the queue name: name it with the prefix of "queue:" such as "queue:my-queue". Use the LPOP command: Eject the element from the head of the queue and return its value, such as LPOP queue:my-queue. Processing empty queues: If the queue is empty, LPOP returns nil, and you can check whether the queue exists before reading the element.

Question: How to view the Redis server version? Use the command line tool redis-cli --version to view the version of the connected server. Use the INFO server command to view the server's internal version and need to parse and return information. In a cluster environment, check the version consistency of each node and can be automatically checked using scripts. Use scripts to automate viewing versions, such as connecting with Python scripts and printing version information.

Navicat's password security relies on the combination of symmetric encryption, password strength and security measures. Specific measures include: using SSL connections (provided that the database server supports and correctly configures the certificate), regularly updating Navicat, using more secure methods (such as SSH tunnels), restricting access rights, and most importantly, never record passwords.
