用Python做的数学四则运算_算术口算练习程序(后添加减乘除)
最近着迷上了 Python
用Python给小宝做的数学算数口算练习程序(2015年1月添加四则运算)!
给小宝做的口算游戏:
#用Python给小宝做的数学算数口算练习程序(2015年1月添加四则运算)! #给小宝做的口算游戏: import string import random input=11 nums=10 num=0 righ1t=0 #分数# flagwrong=0 #没错过 print e[1;34mThis text is bold blue.e[0m print 一共有%d道题目:%(nums) print e[33;45;1mBold yellow on magenta.e[0m ; while True: flagwrong=0 if num>=nums: print 一共(1次就)做对了%d道/%d道 题目%(righ1t,nums), if righ1t>=10: print 你真棒啊! 100分啊!!! elif righ1t>=8: print 你不错啊,80分以上啊!!! else: print 还要加油哦! break; elif num num=num+1 x=random.randint(1, 100) #100以内的数字 y=random.randint(1, 10) print symbol=random.randint(0,3) #symbol=3 #测试除法# if 0==symbol: #加法 # 内循环-做题 print 第%d题:%d+%d=%(num,x,y), input=raw_input() intp=string.atoi(input) print intp while intp!=(x+y): print 不对! %d+%d不等于%d%(x,y,intp) flagwrong=1; #错过一次,就不能做成绩(分数)的增长了 print 再算一遍,第%d题:%d+%d=%(num,x,y), input=raw_input() intp=string.atoi(input) if intp==x+y: break; continue; if intp == (x+y): print 对了! %d+%d就是等于%d%(x,y,intp) if flagwrong==0: righ1t=righ1t+1 continue; break; elif 1==symbol: #减法 # 内循环-做题 if x print 第%d题:%d-%d=%(num,x,y), input=raw_input() intp=string.atoi(input) print intp while intp!=(x-y): print 不对! %d-%d不等于%d%(x,y,intp) flagwrong=1; #错过一次,就不能做成绩(分数)的增长了 print 再算一遍,第%d题:%d-%d=%(num,x,y), input=raw_input() intp=string.atoi(input) if intp==x-y: break; continue; if intp == (x-y): print 对了! %d-%d就是等于%d%(x,y,intp) if flagwrong==0: righ1t=righ1t+1 continue; break; elif 2==symbol: #乘法 # 内循环-做题 #if x print 第%d题:%d*%d=%(num,x,y), input=raw_input() intp=string.atoi(input) print intp while intp!=(x*y): print 不对! %d*%d不等于%d%(x,y,intp) flagwrong=1; #错过一次,就不能做成绩(分数)的增长了 print 再算一遍,第%d题:%d*%d=%(num,x,y), input=raw_input() intp=string.atoi(input) if intp==x*y: break; continue; if intp == (x*y): print 对了! %d*%d就是等于%d%(x,y,intp) if flagwrong==0: righ1t=righ1t+1 continue; break; elif 3==symbol: #除法 # 内循环-做题 if x print 第%d题:%d/%d=%(num,x,y), print 商?:, input=raw_input() intp=string.atoi(input) print 余数是?:, input2yushu=raw_input() intp2yushu=string.atoi(input2yushu) print 商:, print intp, print 余数是:, print intp2yushu while x !=( ( intp * y)+intp2yushu ): print 不对! %d/%d不等于商%d,余%d !%(x,y,intp,intp2yushu) flagwrong=1; #错过一次,就不能做成绩(分数)的增长了 print 再算一遍,第%d题:%d/%d的商=?%(num,x,y), input=raw_input() intp=string.atoi(input) print 余?=, input2yushu=raw_input() intp2yushu=string.atoi(input2yushu) if x ==( intp*y + intp2yushu ): break; continue; if x == ( (intp*y)+intp2yushu ): print 对了! %d/%d就是等于商%d,余%d !%(x,y,intp,intp2yushu) if flagwrong==0: righ1t=righ1t+1 continue; break; #100以内的 加法/减法/乘法/除法 num=0

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap
