Python 多线程抓取图片效率对比
目的:
是学习python 多线程的工作原理,及通过抓取400张图片这种IO密集型应用来查看多线程效率对比
import requests import urlparse import os import time import threading import Queue path = '/home/lidongwei/scrapy/owan_img_urls.txt' #path = '/home/lidongwei/scrapy/cc.txt' fetch_img_save_path = '/home/lidongwei/scrapy/owan_imgs/' # 读取保存再文件里面400个urls with open(path) as f : urls = f.readlines() urls = urls[:400] # 使用Queue来线程通信,因为队列是线程安全的(就是默认这个队列已经有锁) q = Queue.Queue() for url in urls: q.put(url) start = time.time() def fetch_img_func(q): while True: try: # 不阻塞的读取队列数据 url = q.get_nowait() i = q.qsize() except Exception, e: print e break; print 'Current Thread Name Runing %s ... 11' % threading.currentThread().name url = url.strip() img_path = urlparse.urlparse(url).path ext = os.path.splitext(img_path)[1] print 'handle %s pic... pic url %s ' % (i, url) res = requests.get(url, stream=True) if res.status_code == 200: save_img_path = '%s%s%s' % (fetch_img_save_path, i, ext) # 保存下载的图片 with open(save_img_path, 'wb') as fs: for chunk in res.iter_content(1024): fs.write(chunk) print 'save %s pic ' % i # 可以开多个线程测试不同效果 t1 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_1") #t2 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_2") #t3 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_3") #t4 = threading.Thread(target=fetch_img_func, args=(q, ), name="child_thread_4") t1.start() #t2.start() #t3.start() #t4.start() t1.join() #t2.join() #t3.join() #t4.join() end = time.time() print 'Done %s ' % (end-start)
实验结果
400图片
4线程 Done 12.443133831 3线程 Done 12.9201757908 2线程 Done 32.8628299236 1线程 Done 54.6115460396
总结
Python 自带GIL 大锁, 没有真正意义上的多线程并行执行。GIL 大锁会在线程阻塞的时候释放,此时等待的线程就可以激活工作,这样如此类推,大大提高IO阻塞型应用的效率。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code extensions pose malicious risks, such as hiding malicious code, exploiting vulnerabilities, and masturbating as legitimate extensions. Methods to identify malicious extensions include: checking publishers, reading comments, checking code, and installing with caution. Security measures also include: security awareness, good habits, regular updates and antivirus software.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code not only can run Python, but also provides powerful functions, including: automatically identifying Python files after installing Python extensions, providing functions such as code completion, syntax highlighting, and debugging. Relying on the installed Python environment, extensions act as bridge connection editing and Python environment. The debugging functions include setting breakpoints, step-by-step debugging, viewing variable values, and improving debugging efficiency. The integrated terminal supports running complex commands such as unit testing and package management. Supports extended configuration and enhances features such as code formatting, analysis and version control.

Yes, VS Code can run Python code. To run Python efficiently in VS Code, complete the following steps: Install the Python interpreter and configure environment variables. Install the Python extension in VS Code. Run Python code in VS Code's terminal via the command line. Use VS Code's debugging capabilities and code formatting to improve development efficiency. Adopt good programming habits and use performance analysis tools to optimize code performance.
