常用python编程模板汇总
在我们编程时,有一些代码是固定的,例如Socket连接的代码,读取文件内容的代码,一般情况下我都是到网上搜一下然后直接粘贴下来改一改,当然如果你能自己记住所有的代码那更厉害,但是自己写毕竟不如粘贴来的快,而且自己写的代码还要测试,而一段经过测试的代码则可以多次使用,所以这里我就自己总结了一下python中常用的编程模板,如果还有哪些漏掉了请大家及时补充哈。
一、读写文件
1、读文件
(1)、一次性读取全部内容
filepath='D:/data.txt' #文件路径 with open(filepath, 'r') as f: print f.read()
(2)读取固定字节大小
# -*- coding: UTF-8 -*- filepath='D:/data.txt' #文件路径 f = open(filepath, 'r') content="" try: while True: chunk = f.read(8) if not chunk: break content+=chunk finally: f.close() print content
(3)每次读取一行
# -*- coding: UTF-8 -*- filepath='D:/data.txt' #文件路径 f = open(filepath, "r") content="" try: while True: line = f.readline() if not line: break content+=line finally: f.close() print content
(4)一次读取所有的行
# -*- coding: UTF-8 -*- filepath='D:/data.txt' #文件路径 with open(filepath, "r") as f: txt_list = f.readlines() for i in txt_list: print i,
2、写文件
# -*- coding: UTF-8 -*- filepath='D:/data1.txt' #文件路径 with open(filepath, "w") as f: #w会覆盖原来的文件,a会在文件末尾追加 f.write('1234')
二、连接Mysql数据库
1、连接
#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb DB_URL='localhost' USER_NAME='root' PASSWD='1234' DB_NAME='test' # 打开数据库连接 db = MySQLdb.connect(DB_URL,USER_NAME,PASSWD,DB_NAME) # 使用cursor()方法获取操作游标 cursor = db.cursor() # 使用execute方法执行SQL语句 cursor.execute("SELECT VERSION()") # 使用 fetchone() 方法获取一条数据库。 data = cursor.fetchone() print "Database version : %s " % data # 关闭数据库连接 db.close()
2、创建表
<p>#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb # 打开数据库连接 db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) # 使用cursor()方法获取操作游标 cursor = db.cursor() # 如果数据表已经存在使用 execute() 方法删除表。 cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") # 创建数据表SQL语句 sql = """CREATE TABLE EMPLOYEE ( FIRST_NAME CHAR(20) NOT NULL, LAST_NAME CHAR(20), AGE INT, SEX CHAR(1), INCOME FLOAT )""" cursor.execute(sql) # 关闭数据库连接 db.close()</p>
3、插入
#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb # 打开数据库连接 db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) # 使用cursor()方法获取操作游标 cursor = db.cursor() # SQL 插入语句 sql = """INSERT INTO EMPLOYEE(FIRST_NAME, LAST_NAME, AGE, SEX, INCOME) VALUES ('Mac', 'Mohan', 20, 'M', 2000)""" try: # 执行sql语句 cursor.execute(sql) # 提交到数据库执行 db.commit() except: # Rollback in case there is any error db.rollback() # 关闭数据库连接 db.close()
4、查询
<p>#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb # 打开数据库连接 db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) # 使用cursor()方法获取操作游标 cursor = db.cursor() # SQL 查询语句 sql = "SELECT * FROM EMPLOYEE \ WHERE INCOME > '%d'" % (1000) try: # 执行SQL语句 cursor.execute(sql) # 获取所有记录列表 results = cursor.fetchall() for row in results: fname = row[0] lname = row[1] age = row[2] sex = row[3] income = row[4] # 打印结果 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \ (fname, lname, age, sex, income ) except: print "Error: unable to fecth data" # 关闭数据库连接 db.close()</p>
5、更新
#!/usr/bin/python # -*- coding: UTF-8 -*- import MySQLdb # 打开数据库连接 db = MySQLdb.connect("localhost","testuser","test123","TESTDB" ) # 使用cursor()方法获取操作游标 cursor = db.cursor() # SQL 更新语句 sql = "UPDATE EMPLOYEE SET AGE = AGE + 1 WHERE SEX = '%c'" % ('M') try: # 执行SQL语句 cursor.execute(sql) # 提交到数据库执行 db.commit() except: # 发生错误时回滚 db.rollback() # 关闭数据库连接 db.close()
三、Socket
1、服务器
from socket import * from time import ctime HOST = '' PORT = 21568 BUFSIZ = 1024 ADDR = (HOST, PORT) tcpSerSock = socket(AF_INET, SOCK_STREAM) tcpSerSock.bind(ADDR) tcpSerSock.listen(5) while True: print 'waiting for connection...' tcpCliSock, addr = tcpSerSock.accept() print '...connected from:', addr while True: try: data = tcpCliSock.recv(BUFSIZ) print '<', data tcpCliSock.send('[%s] %s' % (ctime(), data)) except: print 'disconnect from:', addr tcpCliSock.close() break tcpSerSock.close()
2、客户端
from socket import * HOST = 'localhost' PORT = 21568 BUFSIZ = 1024 ADDR = (HOST, PORT) tcpCliSock = socket(AF_INET, SOCK_STREAM) tcpCliSock.connect(ADDR) try: while True: data = raw_input('>') if data == 'close': break if not data: continue tcpCliSock.send(data) data = tcpCliSock.recv(BUFSIZ) print data except: tcpCliSock.close()
四、多线程
import time, threading # 新线程执行的代码: def loop(): print 'thread %s is running...' % threading.current_thread().name n = 0 while n < 5: n = n + 1 print 'thread %s >>> %s' % (threading.current_thread().name, n) time.sleep(1) print 'thread %s ended.' % threading.current_thread().name print 'thread %s is running...' % threading.current_thread().name t = threading.Thread(target=loop, name='LoopThread') t.start() t.join() print 'thread %s ended.' % threading.current_thread().name
还请大家积极补充!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Solution to permission issues when viewing Python version in Linux terminal When you try to view Python version in Linux terminal, enter python...

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

This article guides Python developers on building command-line interfaces (CLIs). It details using libraries like typer, click, and argparse, emphasizing input/output handling, and promoting user-friendly design patterns for improved CLI usability.

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H
