python实现发送和获取手机短信验证码
首先为大家分享python实现发送手机短信验证码后台方法,供大家参考,具体内容如下
1、生成4位数字验证码
def createPhoneCode(session): chars=['0','1','2','3','4','5','6','7','8','9'] x = random.choice(chars),random.choice(chars),random.choice(chars),random.choice(chars) verifyCode = "".join(x) session["phoneVerifyCode"] = {"time":int(time.time()), "code":verifyCode} return verifyCode
2、发送给外部短信接口(post方式)
def sendTelMsg(msg, phoneID): SendTelMsgUrl="http://www.810086.com.cn/jk.aspx" params = {"zh":"china", "mm":"china@10086", "hm":phoneID,"nr":msg,"sms_type":88} postData=urllib.urlencode(params) req = urllib2.Request(SendTelMsgUrl, postData) req.add_header('Content-Type', "application/x-www-form-urlencoded") respone = urllib2.urlopen(req) res = respone.read() return res
其中session参数是django urls.py 后台方法 以request.session传入
3、前端js
$("button[name=getVerifyBt]").bind("click", function(){ var self = this; var userPhoneEl = $("input[name=phoneNum]"); var userPhone = $.trim(userPhoneEl.val()); if (userPhone == ""){ alert("请填写号码!"); return; } $.get("/getPhoneVerifyCode/"+userPhone + "/") .success(function(msg){ console.info(msg); var ddEl = $(self).siblings("dd.showTag"); if(msg == "ok"){ ddEl.find("span").hide(); ddEl.find("span[name=success]").show(); }else{ ddEl.find("span").hide(); ddEl.find("span[name=error]").show(); } }) .error(function(msg){ console.info(msg); }); var step = 60; $(this).attr("disabled", true); $(this).html("重新发送"+step); var interThread = setInterval(function(){ step-=1; $(self).html("重新发送"+step); if(step <=0){ $(self).removeAttr("disabled"); $(self).html("获取验证码"); clearInterval(interThread); } }, 1000); });
下面就为大家介绍python解决接口测试获取手机验证码问题的方法:
最近在做接口测试的时候遇到一个问题,就是有个很重要的接口要用到手机短信验证码,而其他接口都依赖于这个验证码,如果没有短信验证码就不能进行下面接口的测试,所以为了定时的验证线上的接口是否正常,而且又不修改代码,所以就想到以下解决方案,如果大家有了更好方案可以一起交流分享。
Android在收到短信后会发送一个Action为android.provider.Telephony.SMS_RECEIVED的广播,所以我们只需要写个类继承BroadcastReceiver就可以很容易地监听到短信。
package com.example.getsms; import android.content.BroadcastReceiver; import android.content.ContentResolver; import android.content.Context; import android.content.Intent; import android.os.Bundle; import android.telephony.SmsMessage; import android.text.TextUtils; import android.util.Log; public class SmsInterceptReceiver extends BroadcastReceiver { private final String TAG = "SmsRec"; private static final String SMS_EXTRA_NAME ="pdus"; @Override public void onReceive(Context context, Intent intent) { // TODO Auto-generated method stub String message = ""; Log.e(TAG, "free message " ); Bundle extras = intent.getExtras(); if ( extras != null ) { try { Object[] smsExtra = (Object[]) extras.get( SMS_EXTRA_NAME ); ContentResolver contentResolver = context.getContentResolver(); Log.e(TAG, "free message " ); for ( int i = 0; i < smsExtra.length; ++i ) { SmsMessage sms = SmsMessage.createFromPdu((byte[]) smsExtra[i]); String body = sms.getMessageBody().toString(); message += body; } Log.e(TAG, "free message : " + message); } catch (Exception e) { // TODO: handle exception Log.e(TAG, e.getMessage()); } } } }
AndroidManifest.xml里注册一下接收器:
<receiver android:name=".SmsInterceptReceiver"> <intent-filter> <action android:name="android.provider.Telephony.SMS_RECEIVED" /> </intent-filter> </receiver>
添加权限:
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
python 代码,主要通过adb log来获取apk包所截取的短信信息,然后进行分析后既可使用。
__author__ = 'guozhenhua' #coding=utf-8 import urllib2 import os,time #解析短信验证码 os.system("adb logcat -c") cmd="adb logcat -d |findstr E/SmsRec" #time.sleep(30); while(1): smscode= os.popen(cmd).read() #print smscode if (smscode!=""): smscode=smscode.split("验证码:")[1].split(",")[0] break; print "验证码是:"+smscode
以上就是本文的全部内容,内容很丰富,但是也存在一些不足,希望大家谅解,共同学习进步。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti
