使用Python下载歌词并嵌入歌曲文件中的实现代码
使用python扫描本地音乐并下载歌词
这次这个真的是干货哦,昨晚弄了半晚上,,,,从8点吃完饭就开始写,一直到了快12点才弄好,,,新手,伤不起呀。。。。
先简单的说下吧,百度提供了一个音乐搜索的api,你想百度请求类似于
http://box.zhangmen.baidu.com/x?op=12&count=1&title=最佳损友$$陈奕迅$$$$
的地址,百度会给你返回一段xml,如下所示
This XML file does not appear to have any style information associated with it. The document tree is shown below. <result> <count>1</count> <url> <encode> <![CDATA[ http://zhangmenshiting.baidu.com/data2/music/12762845/YmRqamdua21fn6NndK6ap5WXcJlrmG1xlJhobWibmGpjk5ZtmWiZcWRjZ5lqbGyelGKWlZtubGljZ5lka2uanWSXY1qin5t1YWBmZW5ocGlhaWdnbGtqbzE$ ]]> </encode> <decode> <![CDATA[ 12762845.mp3?xcode=e6b69cf593ea22ac9d2b9314e565fc0caf85125f065ce3e0&mid=0.31929107437537 ]]> </decode> <type>8</type> <lrcid>2829</lrcid> <flag>1</flag> </url> <durl> <encode> <![CDATA[ http://zhangmenshiting2.baidu.com/data2/music/7345405/aGVnaWlmbGaeomZzrZmmnJZvmGqXbHCbl2dsZ5qXaWqSlWpsmmdrb2mXamxpbXCclGNsmW2ba25mYmxtapmZcWqTWaGemnRoX2VkbWdvaGhoZmZramluOA$$ ]]> </encode> <decode> <![CDATA[ 7345405.mp3?xcode=e6b69cf593ea22ac78e1478e78479dc19e8e4650995cb99a&mid=0.31929107437537 ]]> </decode> <type>8</type> <lrcid>2829</lrcid> <flag>1</flag> </durl> <p2p> <hash>f98b6772aa97966550ec80617879becee0233bf4</hash> <url> <![CDATA[ ]]> </url> <type>mp3</type> <size>3778335</size> <bitrate>128</bitrate> </p2p> </result>
简单的说明下,由于我们要做的只是获取到歌曲的lrc歌词地址,所以有用的只有2829这个标签。
而encode和decode里面的拼接起来就是mp3的下载地址,如本例的
http://zhangmenshiting.baidu.com/data2/music/12762845/YmRqamdua21fn6NndK6ap5WXcJlrmG1xlJhobWibmGpjk5ZtmWiZcWRjZ5lqbGyelGKWlZtubGljZ5lka2uanWSXY1qin5t1YWBmZW5ocGlhaWdnbGtqbzE$12762845.mp3?xcode=e6b69cf593ea22ac9d2b9314e565fc0caf85125f065ce3e0&mid=0.31929107437537
就是下载地址,不过音质太差,有时间在研究下这个。
继续说歌词,注意lrcid标签里面的2829
http://box.zhangmen.baidu.com/bdlrc/ 这个是百度lrc歌词存放地址,
然后本例的歌词地址是http://box.zhangmen.baidu.com/bdlrc/28/2829.lrc
看到了吧,歌词地址后面的两个数字的计算方法是在lrcid除以100所获得的整数,就是第一个数字,然后第二个数字就是lrcid,然后后面加上后缀.lrc就搞定了
获得lrc地址之后就简单了,只要请求该地址,然后将获取到的内容写入文件就ok了。
好了,大概就是这样,下面是代码
import os import os.path import re import eyed3 import urllib2 import urllib from urllib import urlencode import sys import os reload(sys) sys.setdefaultencoding('utf8') music_path = r"E:\music" lrc_path = r"e:\lrc" os.remove('nolrc.txt') os.remove('lrcxml.txt') the_file = open('lrcxml.txt','a') nolrc_file = open('nolrc.txt','a') for root,dirs,files in os.walk(music_path): for filepath in files: the_path = os.path.join(root,filepath) if (the_path.find("mp3") != -1): print the_path the_music = eyed3.load(the_path) the_teg = the_music.tag._getAlbum() the_artist = the_music.tag._getArtist() the_title = the_music.tag._getTitle() # print the_teg # print the_title # print the_artist b = the_title.replace(' ','+') # print b a = the_artist.replace(' ','+') #print urlencode(str(b)) if isinstance(a,unicode): a = a.encode('utf8') song_url = "http://box.zhangmen.baidu.com/x?op=12&count=1&title="+b+"$$"+a+"$$$$ " the_file.write(song_url+'\n') page = urllib2.urlopen(song_url).read() print page theid = 0 lrcid = re.compile('<lrcid>(.*?)</lrcid>',re.S).findall(page) have_lrc = True if lrcid != []: theid = lrcid[0] else: nolrc_file.write(the_title+'\n') have_lrc = False print theid if have_lrc: firstid = int(theid)/100 lrcurl = "http://box.zhangmen.baidu.com/bdlrc/"+str(firstid)+"/"+theid+".lrc" print lrcurl lrc = urllib2.urlopen(lrcurl).read() if(lrc.find('html')== -1): lrcfile = open(lrc_path+"\\"+the_title+".lrc",'w') lrcfile.writelines(lrc) lrcfile.close() else: nolrc_file.write(the_title+'\n') the_file.close() nolrc_file.close() print "end!"
有用第一步请求所获取到底是xml格式的,所以本来想着解析xml来获取lrcid,但是在实现过程中遇到了各种问题,别的还容易,就在这一块儿浪费的时间最长,纠结未果之后,只能改用正则表达式来获取了。。。
使用python将歌词嵌入歌曲中
以前一直用的是Google Play Music来作为手机的音乐播放器,可是现在谷歌被墙的这么厉害的,从PC上传到Google Play的音乐在手机上面同步下来的话特麻烦,索性放弃之买了大名鼎鼎的Poweramp播放器,开始使用之后瞬间就被Poweramp强大的功能所吸引住了,不愧是安卓端的音乐播放器的王者!唯美的锁屏界面,强大的均衡器功能等等。唯一美中不足的就是歌词.如果要显示歌词的话必须安装第三方软件,或者是把歌词嵌入到音乐中。所以昨天下班之后就开始研究,所幸最后终于搞定了,先上下效果图
可以看到,效果还是很不错的呢。
好了,废话不多说,下面上程序
首先,必须安装eyed3模块,还有,我所有的歌词都在E:\lrc这个路径中的
import threading import time import datetime import re import os import eyed3 import sys reload(sys) sys.setdefaultencoding('utf8') def getstr(i): if i <10: return "0"+str(i) else: return str(i) musicpath=r'I:\music' lrcpath=r'E:\lrc' def deallrc(str): mystr=re.sub(r'\[\d\d:\d\d.\d\d\]','',str) mystr.replace('\n','') return mystr def checklrcfile(path,timespan): file=open(path,'r') mylrcstr='' #print timespan for line in file.readlines(100): #errorlog(line) if line.find(timespan)>0: return deallrc(line) else: continue return '' def getlrcstr(lrc): mylrcstr='' #print lrc for i in range(00,05): for j in range(00,59): for k in range(00,99): timespan=getstr(i)+":"+getstr(j)+"."+getstr(k) mylrcstr+=checklrcfile(lrc, timespan) #print timespan return mylrcstr def getlrc(musicname): musicname=u''.join(musicname) musicname=musicname.encode('gb2312') for root,dirs,files in os.walk(lrcpath): for filepath in files: the_path = os.path.join(root,filepath) if (the_path.find(musicname) != -1): print the_path return the_path def errorlog(path): file=open(r'e:\nolrc.txt','a') if path is None: path='' path=path+'\n' file.write(path) file.close() def writetag(themusic,lrcstr): music=eyed3.load(themusic) lrcstr=lrcstr.decode('utf8') lrcstr=u''.join(lrcstr) #lrcstr=unicode(lrcstr) music.tag.lyrics.set(lrcstr) music.tag.save() def dealmusic(path): print path the_music = eyed3.load(path) the_teg = the_music.tag._getAlbum() the_artist = the_music.tag._getArtist() the_title = the_music.tag._getTitle() #print the_title try: lrc=getlrc(the_title) lrcstr=getlrcstr(lrc) writetag(path, lrcstr) except: errorlog(path) class writelrc(threading.Thread): def __init__(self,the_path): threading.Thread.__init__(self) self.thepath=the_path def run(self): dealmusic(self.thepath) if __name__=='__main__': count=0 threads=[] for root,dirs,files in os.walk(musicpath): for filepath in files: the_path = os.path.join(root,filepath) if (the_path.find("mp3") != -1): count+=1 threads.append(writelrc(the_path)) if count%10==0: for t in threads: t.start() for t in threads: t.join() threads=[]
好了,大概就是这样,大家有什么问题可以直接提出来,我会尽快回复的。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Efficient training of PyTorch models on CentOS systems requires steps, and this article will provide detailed guides. 1. Environment preparation: Python and dependency installation: CentOS system usually preinstalls Python, but the version may be older. It is recommended to use yum or dnf to install Python 3 and upgrade pip: sudoyumupdatepython3 (or sudodnfupdatepython3), pip3install--upgradepip. CUDA and cuDNN (GPU acceleration): If you use NVIDIAGPU, you need to install CUDATool

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

Enable PyTorch GPU acceleration on CentOS system requires the installation of CUDA, cuDNN and GPU versions of PyTorch. The following steps will guide you through the process: CUDA and cuDNN installation determine CUDA version compatibility: Use the nvidia-smi command to view the CUDA version supported by your NVIDIA graphics card. For example, your MX450 graphics card may support CUDA11.1 or higher. Download and install CUDAToolkit: Visit the official website of NVIDIACUDAToolkit and download and install the corresponding version according to the highest CUDA version supported by your graphics card. Install cuDNN library:

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

When selecting a PyTorch version under CentOS, the following key factors need to be considered: 1. CUDA version compatibility GPU support: If you have NVIDIA GPU and want to utilize GPU acceleration, you need to choose PyTorch that supports the corresponding CUDA version. You can view the CUDA version supported by running the nvidia-smi command. CPU version: If you don't have a GPU or don't want to use a GPU, you can choose a CPU version of PyTorch. 2. Python version PyTorch

MinIO Object Storage: High-performance deployment under CentOS system MinIO is a high-performance, distributed object storage system developed based on the Go language, compatible with AmazonS3. It supports a variety of client languages, including Java, Python, JavaScript, and Go. This article will briefly introduce the installation and compatibility of MinIO on CentOS systems. CentOS version compatibility MinIO has been verified on multiple CentOS versions, including but not limited to: CentOS7.9: Provides a complete installation guide covering cluster configuration, environment preparation, configuration file settings, disk partitioning, and MinI

CentOS Installing Nginx requires following the following steps: Installing dependencies such as development tools, pcre-devel, and openssl-devel. Download the Nginx source code package, unzip it and compile and install it, and specify the installation path as /usr/local/nginx. Create Nginx users and user groups and set permissions. Modify the configuration file nginx.conf, and configure the listening port and domain name/IP address. Start the Nginx service. Common errors need to be paid attention to, such as dependency issues, port conflicts, and configuration file errors. Performance optimization needs to be adjusted according to the specific situation, such as turning on cache and adjusting the number of worker processes.
