Python 文件管理实例详解
本文实例讲述了Python 文件管理的方法。分享给大家供大家参考,具体如下:
一、Python中的文件管理
文件管理是很多应用程序的基本功能和重要组成部分。Python可以使文件管理极其简单,特别是和其它语言相对比。
以下,Peyton McCullough讲解了文件管理基础。
介绍
你玩过的游戏使用文件来保存存档;你下的订单保存在文件中;很明显,你早上写的报告也保存在文件中。
几乎以任何语言编写的众多应用程序中,文件管理是很重要的一部分。Python当然也不例外。在这篇文章中,我们将探究如何使用一些模块来操作文件。我们会完成读文件,写文件,增加文件内容的操作,还有一些另类的用法。OK,让我们开始吧。
读写文件
最基本的文件操作当然就是在文件中读写数据。这也是很容易掌握的。现在打开一个文件以进行写操作:
'w'是指文件将被写入数据,语句的其它部分很好理解。下一步就是将数据写入文件:
这个语句将"This is a test."写入文件的第一行,"Really, it is."写入文件的第二行。最后,我们需要做清理工作,并且关闭文件:
正如你所见,在Python的面向对象机制下,这确实非常简单。需要注意的是,当你再次使用"w"方式在文件中写数据,所有原来的内容都会被删除。如果想保留原来的内容,可以使用"a"方式在文件中结尾附加数据:
fileHandle = open ( 'test.txt', 'a' ) fileHandle.write ( '\n\nBottom line.' ) fileHandle.close()
然后,我们读取test.txt,并将内容显示出来:
fileHandle = open ( 'test.txt' ) print fileHandle.read() fileHandle.close()
以上语句将读取整个文件并显示其中的数据。我们也可以读取文件中的一行:
fileHandle = open ( 'test.txt' ) print fileHandle.readline() # "This is a test." fileHandle.close()
同时,也可以将文件内容保存到一个list中:
fileHandle = open ( 'test.txt' ) fileList = fileHandle.readlines()<DIV></DIV> for fileLine in fileList: print '>>', fileLine fileHandle.close()
Python在读取一个文件时,会记住其在文件中的位置,如下所示:
fileHandle = open ( 'test.txt' ) garbage = fileHandle.readline() fileHandle.readline() # "Really, it is."fileHandle.close()
可以看到,只有第二行显示出来。然而,我们可以让Python从头开始读来解决这个问题:
fileHandle = open ( 'test.txt' ) garbage = fileHandle.readline() fileHandle.seek ( 0 ) print fileHandle.readline() # "This is a test." fileHandle.close()
在上面这个例子中,我们让Python从文件第一个字节开始读取数据。所以,第一行文字显示了出来。当然,我们也可以获取Python在文件中的位置:
fileHandle = open ( 'test.txt' ) print fileHandle.readline() # "This is a test." print fileHandle.tell() # "17" print fileHandle.readline() # "Really, it is."
或者在文件中一次读取几个字节的内容:
fileHandle = open ( 'test.txt' ) print fileHandle.read ( 1 ) # "T" fileHandle.seek ( 4 ) print FileHandle.read ( 1 ) # " "(原文有错)
在Windows和Macintosh环境下,有时可能需要以二进制方式读写文件,比如图片和可执行文件。此时,只要在打开文件的方式参数中增加一个"b"即可:
fileHandle = open ( 'testBinary.txt', 'wb' ) fileHandle.write ( 'There is no spoon.' ) fileHandle.close() fileHandle = open ( 'testBinary.txt', 'rb' ) print fileHandle.read() fileHandle.close()
二、从现有文件中获取信息
使用Python中的模块,可以从现有文件中获取信息。使用"os"模块和"stat"模块可以获取文件的基本信息:
import os import stat import time<DIV></DIV> fileStats = os.stat ( 'test.txt' ) fileInfo = { 'Size' : fileStats [ stat.ST_SIZE ], 'LastModified' : time.ctime ( fileStats [ stat.ST_MTIME ] ), 'LastAccessed' : time.ctime ( fileStats [ stat.ST_ATIME ] ), 'CreationTime' : time.ctime ( fileStats [ stat.ST_CTIME ] ), 'Mode' : fileStats [ stat.ST_MODE ] } for infoField, infoValue in fileInfo: print infoField, ':' + infoValue if stat.S_ISDIR ( fileStats [ stat.ST_MODE ] ): print 'Directory. ' else: print 'Non-directory.'
上面这个例子创建了一个包含文件基本信息的dictionary。然后显示了相关信息,并且告诉我们打开的是否为目录。我们也可以试一下打开的是否是其它几种类型:
import os import stat fileStats = os.stat ( 'test.txt' ) fileMode = fileStats [ stat.ST_MODE ] if stat.S_ISREG ( fileStats [ stat.ST_MODE ] ): print 'Regular file.' elif stat.S_ISDIR ( fileStats [ stat.ST_MODE ] ): print 'Directory.' elif stat.S_ISLNK ( fileStats [ stat.ST_MODE ] ): print 'Shortcut.' elif stat.S_ISSOCK ( fileStats [ stat.ST_MODE ] ): print 'Socket.' elif stat.S_ISFIFO ( fileStats [ stat.ST_MODE ] ): print 'Named pipe.' elif stat.S_ISBLK ( fileStats [ stat.ST_MODE ] ): print 'Block special device.' elif stat.S_ISCHR ( fileStats [ stat.ST_MODE ] ):
另外,我们可以使用"os.path"来获取基本信息:
import os.path fileStats = 'test.txt' if os.path.isdir ( fileStats ): print 'Directory.' elif os.path.isfile ( fileStats ): print 'File.' elif os.path.islink ( fileStats ): print 'Shortcut.' elif os.path.ismount ( fileStats ): print 'Mount point.' import os for fileName in os.listdir ( '/' ): print fileName
正如你所见,这很简单,用三行代码就可以完成。
创建目录也很简单:
import os os.mkdir ( 'testDirectory' )
删除刚才创建的目录:
import os os.rmdir ( 'testDirectory )
也可以创建多级目录:
import os os.makedirs ( 'I/will/show/you/how/deep/the/rabbit/hole/goes' ) os.makedirs ( 'I/will/show/you/how/deep/the/rabbit/hole/goes' )
如果没有在创建的文件夹中添加任何东西,就可以一次性将它们全部删除(即,删除所列的所有空文件夹):
import os os.removedirs ( 'I/will/show/you/how/deep/the/rabbit/hole/goes'
当需要对一个特定的文件类型进行操作时,我们可以选择"fnmatch"模块。以下是显示".txt"文件的内容和".exe"文件的文件名:
import fnmatch import os for fileName in os.listdir ( '/' ): if fnmatch.fnmath ( fileName, '*.txt' ): print open ( fileName ).read() elif fnmatch.fnmatch ( fileName, '*.exe' ): print fileName
字符可以表示任意长度的字符。如果要匹配一个字符,则使用"?"符号:
import fnmatch import os for fileName in os.listdir ( '/' ): if fnmatch.fnmatch ( fileName, '?.txt' ): print 'Text file.'
"fnmatch"模块支持正则表达式:
import fnmatch import os import re filePattern = fnmatch.translate ( '*.txt' ) for fileName in os.listdir ( '/' ): if re.match ( filePattern, fileName ): print 'Text file.'
若只需要匹配一种类型的文件,更好的办法是使用"glob"模块。该模块的格式和"fnmatch"相似:
import glob for fileName in glob.glob ( '*.txt' ): print 'Text file.'
使用一定范围的字符来匹配同样可行,就像在正则表达式中使用一样。假设你想要显示扩展名前只有一位数字的文件的文件名:
import glob for fileName in glob.glob ( '[0-9].txt' ): print filename
"glob"模块利用"fnmatch"模块来实现。
四、数据编组
使用前一节中介绍的模块,可以实现在文件中对字符串的读写。
然而,有的时候,你可能需要传递其它类型的数据,如list、tuple、dictionary和其它对象。在Python中,你可以使用Pickling来完成。你可以使用Python标准库中的"pickle"模块完成数据编组。
下面,我们来编组一个包含字符串和数字的list:
import pickle fileHandle = open ( 'pickleFile.txt', 'w' ) testList = [ 'This', 2, 'is', 1, 'a', 0, 'test.' ] pickle.dump ( testList, fileHandle ) fileHandle.close()
拆分编组同样不难:
import pickle fileHandle = open ( 'pickleFile.txt' ) testList = pickle.load ( fileHandle ) fileHandle.close()
现在试试存储更加复杂的数据:
import pickle fileHandle = open ( 'pickleFile.txt', 'w' ) testList = [ 123, { 'Calories' : 190 }, 'Mr. Anderson', [ 1, 2, 7 ] ] pickle.dump ( testList, fileHandle ) fileHandle.close() import pickle fileHandle = open ( 'pickleFile.txt' ) testList = pickle.load ( fileHandle ) fileHandle.close()
如上所述,使用Python的"pickle"模块编组确实很简单。众多对象可以通过它来存储到文件中。如果可以的话,"cPickle"同样胜任这个工作。它和"pickle"模块一样,但是速度更快:
import cPickle fileHandle = open ( 'pickleFile.txt', 'w' ) cPickle.dump ( 1776, fileHandle ) fileHandle.close()
五、创建"虚拟"文件
你用到的许多模块包含需要文件对象作为参数的方法。但是,有时创建并使用一个真实的文件并让人感到有些麻烦。所幸的是,在Python中,你可以使用"StringIO"模块来创建文件并将其保存在内存中:
import StringIO fileHandle = StringIO.StringIO ( "Let freedom ring" ) print fileHandle.read() # "Let freedom ring." fileHandle.close()
cStringIO"模块同样有效。它的使用方法和"StringIO"一样,但就像"cPickle"之于"pickle",它速度更快:
import cStringIO fileHandle = cStringIO.cStringIO ( "To Kill a Mockingbird" ) print fileHandle.read() # "To Kill a Mockingbid" fileHandle.close()
结论
文件管理,是众多编程语言的程序员在编写应用程序是经常遇到的问题。幸好,和其它语言相比,Python使其出乎意料地容易。Python的标准库中提供了许多相关的模块帮助程序员解决这方面的问题,而它的面向对象的机制也简化了操作。
好了,现在你已经了解了Python中文件管理的基本知识,可以在今后的应用程序中很好地使用了。
希望本文所述对大家Python程序设计有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.
