Python中类型关系和继承关系实例详解
本文详细介绍了Python中类型关系和继承关系。分享给大家供大家参考。具体分析如下:
如果一个对象A持有另一个对象B的ID,那么检索到A之后就可以检索到B,我们就说存在一个A到B的导航。这种导航关系使得Python中所有对象之间形成了一个复杂的网络结构。
Python程序的运行包括:
1. 修改这个网络结构;
2. 执行有副作用的代码对象(code object或者说bytecode,见Python Language Reference 3.2)
(副作用是指影响Python虚拟机之外的设备,这些代码都是用C或者别的语言写的,Python写的代码只能完成第一步的功能。print语句除外。)
Python对象之间有两种导航关系:继承关系和类型关系,是Python中最基本的关系。类型关系说明一个对象是通过哪个对象创建的;继承关系说明对象之间的父子关系,这种父子关系在名字的解析过程中起到作用。这里我首先说New Style类之间的这两种关系,掌握了New Style类的关系后,再来说明Classic类就容易了。
首先需要说明一下的是内置模块中的type是什么。大家都知道type可以用来判断一个对象的类型,好像是一个函数。实际上在2.2中type是一个类,而且不是普通的类,是一个可以创建类的类,称为元类。你运行type(type)试一下,打印的是。type类是Python类型系统的核心。用type作为一个判断类型的函数使用是比较特殊的情况,或许是由历史原因造成的,用typeof或许更合适。
如何构造一个类型
你肯定知道是用class语句。但是实际上,在Python核心看来,只有一种方式,那就是调用type的构造函数(因为type是一个类型)。当运行:
class A(object): def f(self): print 1
Python解析器就会执行如下代码所示功能:
def f(self): print 1 A=type('A', (object,), ) # 参数为(名字, 父类tuple,成员dict) del f
两者效果几乎是一样的,你可以试一下。
类型关系的确定除了使用type之外,还可以使用__class__属性。如:
class A(object): pass a=A() a.__class__ # 'class __main__.A' A.__class__ # 'type ' type.__class__ # 'type ' type.__class__.__class__ # 'type ' type.__class__ is type.__class.__class__ # True
继承关系
继承关系只发生在类型之间,继承关系构成一个有向图。所有的类型都是从object继承来的。“所有的”当然也包括type。object的父类还是object。object作为一个类型对象也是有其类型的,这个类型就是type。所以object和type之间的关系就好比先有鸡还是先有蛋的问题了:type是从object继承的(继承关系);object是由type生成的(类型关系)。通过issubclass或者__bases__属性来判断两个类之间的继承关系。
那么从type继承意味着什么呢?那意味着这个类的类型是type,同时父类也是type。但是这种做法在一般的编程中是没有什么意义的(却是meta programmming的核心)。因为一般都用class语句,而不是通过调用type的构造函数来创建类型对象。为了说明语法还是举个例子:
class mytype(type): pass A=mytype('A', (object,), {}) # del f A.__class__ # class '__main__.mytype',元类为mytype mytype.__class__ # 'type '
在用class定义一个类时,会间接调用type的构造函数。但是通过设置__metaclass__属性,可以不去调用type,而是调用type的子类。如:
class A(object): __metaclass__ = mytype A.__class__ # class '__main__.mytype' ,和上面的方式结果一样。
由此,Python对象的类型关系组成了一个树型结构,其中type处于树的根部,由type或者type的子类构造的类型,包括class定义的类(间接调用type),调用type、type的子类构造函数创建的类,int list等系统定义类型处于中间节点,叶节点为instance对象。type本身的类型是什么呢?还是type。这和根目录的父目录还是根目录是一样的。
Classic类不同于New Style类的地方就是当用class创建一个类时,不是间接调用type,而是间接调用types.ClassType,而types.ClassType是由type创建的。
class A: pass type(A) # type 'classobj',注意没有__class__属性。 type(A) is types.ClassType # True types.ClassType.__class__ # 'type'
希望本文所述对大家的Python程序设计有所帮助。

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

XML beautification is essentially improving its readability, including reasonable indentation, line breaks and tag organization. The principle is to traverse the XML tree, add indentation according to the level, and handle empty tags and tags containing text. Python's xml.etree.ElementTree library provides a convenient pretty_xml() function that can implement the above beautification process.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.
