使用Python脚本来控制Windows Azure的简单教程
inux开发人员经常使用 Python 完成小块的工作,因为你可以编写脚本的情况很容易。它已经成为完成配置和部署等小任务的一个流行方式。Windows Azure,微软的云,也没有什么不同。通过 Python SDK 所提供的可用性,Python 成为 Windows Azure 的头等公民。让我们看看我们如何能够使用Python无需其它而只需一个Windows Azure订阅就可以用编程方式从 vmdepot 部署一个映像到 Windows Azure上。
建立一个管理证书
任何与 Windows Azure 的交互都需要两个东西:
我们假设你使用 Linux 运行这个脚本(如果不是,请和我联系,我会告诉你如何使用 Windows 来做同样的事情)。 如果没有安装OpenSSL,请从root提示使用如下命令:
yum install openssl
以下将创建一个 .pem 文件,之后可被翻译成一个 .cer 文件,并导出和上传到Windows Azure。
openssl req -x509 -nodes -days 365 -newkey rsa:1024 -keyout elasta.pem -out elasta.pem
用下面命令导出 .cer:
openssl x509 -inform pem -in elasta.pem -outform der -out elasta.cer
这样你就得到它了,一个可以上传到你的 Windows Azure 订阅的管理证书。当做完这个时,你应该已经能够以编程方式使用 Windows Azure 了。
用你的微软帐户或者 Windows Azure 活动目录凭据登录到 Windows Azure。管理门户位于https://manage.windowsazure.com 。
选择设置标签:
从菜单中选择管理证书:
下方的应用工具条包含一个上传按钮:
选择这个按钮,上传前面导出的 .cer 文件:
在“结果”面板中你应该会看到类似这样的证书入口。
为了有助于解释这篇文章,我已经写了一个Python脚本,可在这里下载:
https://github.com/elastacloud/python-vmdepot-deploy
你可以阅读安装说明获知如何使用脚本。本文的目的是带你领略 Windows Azure 的 Python API 的一些能够帮你开发完全自动化部署的关键功能。
要使用 Windows Azure 中的任何服务管理功能,我们需要一个服务管理对象:
self.sms = ServiceManagementService(vars.subscription_id, vars.certificate_path)
这对我们接下来要做的很有用。正如你能看到的,这需要一个证书和订阅ID作为参数。
构造一个虚拟机
虚拟机映像是一个模板,我们可以用它建立虚拟机。在本例中,我们将使用一个 CentOS 映像,它是从一个由微软的全资子公司 MS Open Tech 持有的称为 vmdepot 的位置拷贝过来的。
我们可以通过列出我们的订阅中所有命名的映像来检查我们是否之前已经复制过指定的映像和注册过现存的。
def _image_by_name(self, name): # return the first one listed, which should be the most stable for i in self.sms.list_os_images(): if name in i.name: return True return False
如果没有,我们可以继续我们的工作流程了。
下面演示了一个创建一个存储帐户(需要一个名称和位置)的简洁过程。因为我在伦敦,所以我会使用“北欧”数据中心(位于都柏林),但在世界各地有超过10个数据中心而且还有一堆正在建设。当存储帐户创建完,它允许最多 200 TB 的blob数据被存储,并由2512位的AES保护,可以用它来访问帐户。存储数据的逻辑单元被称为是一个容器,所以我们需要创建这样的一个容器来让我们存储我们复制的映像。
self._create_storage_account_if_not_exists(vars.storage_account_name, vars.deploy_location) account_key = self._get_primary_account_key(vars.storage_account_name) self._create_container_if_not_exists()
我们现在应该能够从远程位置复制blob。这是通过使用 Windows Azure 提供的一个被称为 copyblob 的 API 完成的。实现代码如下:
self.blob_service.copy_blob(container_name=Constants.storage_container_name, blob_name=Constants.vhd_blob_name, x_ms_copy_source=Constants.centos_minimal_image) self._wait_for_async_copy(Constants.storage_container_name, Constants.vhd_blob_name)
你可以看到,这是一个异步方法,允许从远程位置复制任何 blob。这个 API 的伟大是,你可以用它来从 Windows Azure 的内部或外部复制任何 HTTP 端点,并且使用它没有任何成本。缺点是,它没有 SLA(译者注:Service-Level Agreement的缩写,服务等级协议,是网络服务供应商和客户间的合同)。
然后 blob 就可以在你的 Windows Azure 订阅中注册为一个映像,你可以使用这个来创建多个虚拟机。
self.sms.add_os_image(label=Constants.image_name, media_link=storageimage_uri, name=Constants.image_name, os='Linux')
这个脚本将创建一个“云服务”的包含虚拟机的公共端点,然后设置一个公共端点转发到虚拟机的端口,这样你就可以通过 SSH 进入他们。脚本是这样写的,如果你每次选择相同的云服务,它将从端口22向上递增来添加另一个准备给SSH进入的开放端口来作为云服务的虚拟机。
我们正在从含有映像的 vmdepot 复制映像。通过它,我正在我的订阅中复制和注册 CentOS 迷你映像。
https://vmdepotneurope.blob.core.windows.net/linux-community-store/community-32167-508624a5-01d1-4d57-b109-df2af5b4b232-1.vhd
你可以从这个地址浏览 vmdepot:
http://vmdepot.msopentech.com/List/Index
最后,我们将使用一个非常简单的算法来确定虚拟机已经部署到云服务上,即通过查看存储账户中相关的blob,每个虚拟机都有一个虚拟硬盘(.vhd)。
index = -1 blob_exists = True while blob_exists: index += 1 blob_exists = self._blob_exists(Constants.storage_container_name, "elastavm" + str(index) + ".vhd") vm_media_link = self._make_blob_url(vars.storage_account_name, Constants.storage_container_name, "elastavm" + str(index) + ".vhd") self._create_vm_linux(vars.storage_account_name, vars.storage_account_name, "elastavm" + str(index), vm_media_link, vars.deploy_location, index, vars.username, vars.password)
结果是,我们可以为我们的云服务添加多个虚拟机。
以上都是从 Setup.py 文件完成的。你可以在下面地址的文件中看到上面所有代码:
https://github.com/elastacloud/python-vmdepot-deploy/blob/master/elastacloud/pyvms/Setup.py
根据 readme.md 中的指示启用脚本,你就可以准备开始了。
你可以在下面地址克隆 Windows Azure 的 Python SDK: :
https://github.com/WindowsAzure/azure-sdk-for-python
乐之!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.
