Python内置函数dir详解
1.命令介绍
最近学习并使用了一个python的内置函数dir,首先help一下:
>>> help(dir)
Help on built-in function dir in module __builtin__:
dir()
dir([object]) -> list of strings
Return an alphabetized list of names comprising (some of) the attributes
of the given object, and of attributes reachable from it:
No argument: the names in the current scope.
Module object: the module attributes.
Type or class object: its attributes, and recursively the attributes of
its bases.
Otherwise: its attributes, its class's attributes, and recursively the
attributes of its class's base classes.
通过help,可以简单的认为dir列出指定对象或类的属性。
2.实例
下面是一个简单的测试:
class A:
def a(self):
pass
class A1(A):
def a1(self):
pass
if __name__ == '__main__':
print("dir without arguments:", dir())
print("dir class A:", dir(A))
print("dir class A1:", dir(A1))
a = A1()
print("dir object a(A1):", dir(a))
print("dir function a.a:", dir(a.a))
测试结果:
dir without arguments: ['A', 'A1', '__builtins__', '__doc__', '__file__', '__name__', '__package__']
dir class A: ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'a']
dir class A1: ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'a', 'a1']
dir object a(A1): ['__class__', '__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'a', 'a1']
dir function a.a: ['__call__', '__class__', '__delattr__', '__doc__', '__eq__', '__format__', '__func__', '__ge__', '__get__', '__getattribute__', '__gt__', '__hash__', '__init__', '__le__', '__lt__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__self__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__']
3.使用dir查找module下的所有类
最初使用这个函数的初衷,就是在一个module中查找实现的类名,通过该函数可以很容易的实现。
比如把上面的测试程序保存为A.py,再建一个测试程序,内容如下:
import A
if __name__ == '__main__':
print("dir module A:", dir(A))
结果如下:
dir module A: ['A', 'A1', '__builtins__', '__doc__', '__file__', '__name__', '__package__']
可以看出class A和A1都能够找到。
4.如何找到当前模块下的类
这是一个烦恼较长时间的一个问题,也没有搜到详细的解决方法,下面是我的集中实现方法。
4.1.方法一:在module下面直接调用
比如在上面的A.py最下面添加一行,即可在后续的代码中可以使用selfDir来查找当前的module下的类,修改后的代码如下:
class A:
def a(self):
pass
class A1(A):
def a1(self):
pass
curModuleDir=dir() # get dir of current file(module)
if __name__ == '__main__':
print("dir without arguments:", dir())
print("dir class A:", dir(A))
print("dir class A1:", dir(A1))
a = A1()
print("dir object a(A1):", dir(a))
print("dir function a.a:", dir(a.a))
print("dir current file:", curModuleDir)
4.2.方法二:import当前module
把当前module和别的import一样引用,代码如下:
# A.py
import A as this # import current module
class A:
def a(self):
pass
class A1(A):
def a1(self):
pass
if __name__ == '__main__':
print("dir without arguments:", dir())
print("dir class A:", dir(A))
print("dir class A1:", dir(A1))
a = A1()
print("dir object a(A1):", dir(a))
print("dir function a.a:", dir(a.a))
print("dir current file:", dir(this))
4.3.方法三:根据module名称查找module,然后调用dir
我们知道module下面有个属性__name__显示module名称,怎么能够根据module名称来查找module对象呢?可以借助sys.modules。代码如下:
import sys
class A:
def a(self):
pass
class A1(A):
def a1(self):
pass
if __name__ == '__main__':
print("dir without arguments:", dir())
print("dir class A:", dir(A))
print("dir class A1:", dir(A1))
a = A1()
print("dir object a(A1):", dir(a))
print("dir function a.a:", dir(a.a))
print("dir current file:", dir(sys.modules[__name__])) # 使用__name__获取当前module对象,然后使用对象获得dir

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



PHP and Python have their own advantages and disadvantages, and the choice depends on project needs and personal preferences. 1.PHP is suitable for rapid development and maintenance of large-scale web applications. 2. Python dominates the field of data science and machine learning.

Python and JavaScript have their own advantages and disadvantages in terms of community, libraries and resources. 1) The Python community is friendly and suitable for beginners, but the front-end development resources are not as rich as JavaScript. 2) Python is powerful in data science and machine learning libraries, while JavaScript is better in front-end development libraries and frameworks. 3) Both have rich learning resources, but Python is suitable for starting with official documents, while JavaScript is better with MDNWebDocs. The choice should be based on project needs and personal interests.

Docker uses Linux kernel features to provide an efficient and isolated application running environment. Its working principle is as follows: 1. The mirror is used as a read-only template, which contains everything you need to run the application; 2. The Union File System (UnionFS) stacks multiple file systems, only storing the differences, saving space and speeding up; 3. The daemon manages the mirrors and containers, and the client uses them for interaction; 4. Namespaces and cgroups implement container isolation and resource limitations; 5. Multiple network modes support container interconnection. Only by understanding these core concepts can you better utilize Docker.

In VS Code, you can run the program in the terminal through the following steps: Prepare the code and open the integrated terminal to ensure that the code directory is consistent with the terminal working directory. Select the run command according to the programming language (such as Python's python your_file_name.py) to check whether it runs successfully and resolve errors. Use the debugger to improve debugging efficiency.

Python excels in automation, scripting, and task management. 1) Automation: File backup is realized through standard libraries such as os and shutil. 2) Script writing: Use the psutil library to monitor system resources. 3) Task management: Use the schedule library to schedule tasks. Python's ease of use and rich library support makes it the preferred tool in these areas.

VS Code is the full name Visual Studio Code, which is a free and open source cross-platform code editor and development environment developed by Microsoft. It supports a wide range of programming languages and provides syntax highlighting, code automatic completion, code snippets and smart prompts to improve development efficiency. Through a rich extension ecosystem, users can add extensions to specific needs and languages, such as debuggers, code formatting tools, and Git integrations. VS Code also includes an intuitive debugger that helps quickly find and resolve bugs in your code.

VS Code can run on Windows 8, but the experience may not be great. First make sure the system has been updated to the latest patch, then download the VS Code installation package that matches the system architecture and install it as prompted. After installation, be aware that some extensions may be incompatible with Windows 8 and need to look for alternative extensions or use newer Windows systems in a virtual machine. Install the necessary extensions to check whether they work properly. Although VS Code is feasible on Windows 8, it is recommended to upgrade to a newer Windows system for a better development experience and security.

VS Code can be used to write Python and provides many features that make it an ideal tool for developing Python applications. It allows users to: install Python extensions to get functions such as code completion, syntax highlighting, and debugging. Use the debugger to track code step by step, find and fix errors. Integrate Git for version control. Use code formatting tools to maintain code consistency. Use the Linting tool to spot potential problems ahead of time.
