以一段代码为实例快速入门Python2.7
Python由Guido Van Rossum发明于90年代初期,是目前最流行的编程语言之一,因其语法的清晰简洁我爱上了Python,其代码基本上可以 说是可执行的伪代码。
非常欢迎反馈!你可以通过推特@louiedinh或louiedinh AT gmail联系我。
备注:本文是专门针对Python 2.7的,但应该是适用于Python 2.x的。很快我也会为Python 3写这样的一篇文章!
# 单行注释以井字符开头 """ 我们可以使用三个双引号(")或单引号(') 来编写多行注释 """ ########################################################## ## 1. 基本数据类型和操作符 ########################################################## # 数字 3 #=> 3 # 你预想的数学运算 1 + 1 #=> 2 8 - 1 #=> 7 10 * 2 #=> 20 35 / 5 #=> 7 # 除法略显诡异。整数相除会自动向下取小于结果的最大整数 11 / 4 #=> 2 # 还有浮点数和浮点数除法(译注:除数和被除数两者至少一个为浮点数,结果才会是浮点数) 2.0 # 这是一个浮点数 5.0 / 2.0 #=> 2.5 额...语法更明确一些 # 使用括号来强制优先级 (1 + 3) * 2 #=> 8 # 布尔值也是基本类型数据 True False # 使用not来求反 not True #=> False not False #=> True # 相等比较使用== 1 == 1 #=> True 2 == 1 #=> False # 不相等比较使用!= 1 != 1 #=> False 2 != 1 #=> True # 更多的比较方式 1 < 10 #=> True 1 > 10 #=> False 2 <= 2 #=> True 2 >= 2 #=> True # 比较操作可以串接! 1 < 2 < 3 #=> True 2 < 3 < 2 #=> False # 可以使用"或'创建字符串 "This is a string." 'This is also a string.' # 字符串也可以相加! "Hello " + "world!" #=> "Hello world!" # 字符串可以看作是一个字符列表 "This is a string"[0] #=> 'T' # None是一个对象 None #=> None #################################################### ## 2. 变量与数据容器 #################################################### # 打印输出非常简单 print "I'm Python. Nice to meet you!" # 赋值之前不需要声明变量 some_var = 5 # 约定使用 小写_字母_和_下划线 的命名方式 some_var #=> 5 # 访问之前未赋值的变量会产生一个异常 try: some_other_var except NameError: print "Raises a name error" # 赋值时可以使用条件表达式 some_var = a if a > b else b # 如果a大于b,则将a赋给some_var, # 否则将b赋给some_var # 列表用于存储数据序列 li = [] # 你可以一个预先填充的列表开始 other_li = [4, 5, 6] # 使用append将数据添加到列表的末尾 li.append(1) #li现在为[1] li.append(2) #li现在为[1, 2] li.append(4) #li现在为[1, 2, 4] li.append(3) #li现在为[1, 2, 4, 3] # 使用pop从列表末尾删除数据 li.pop() #=> 3,li现在为[1, 2, 4] # 把刚刚删除的数据存回来 li.append(3) # 现在li再一次为[1, 2, 4, 3] # 像访问数组一样访问列表 li[0] #=> 1 # 看看最后一个元素 li[-1] #=> 3 # 越界访问会产生一个IndexError try: li[4] # 抛出一个IndexError异常 except IndexError: print "Raises an IndexError" # 可以通过分片(slice)语法来查看列表中某个区间的数据 # 以数学角度来说,这是一个闭合/开放区间 li[1:3] #=> [2, 4] # 省略结束位置 li[2:] #=> [4, 3] # 省略开始位置 li[:3] #=> [1, 2, 4] # 使用del从列表中删除任意元素 del li[2] #li现在为[1, 2, 3] # 列表可以相加 li + other_li #=> [1, 3, 3, 4, 5, 6] - 注意:li和other_li并未改变 # 以extend来连结列表 li.extend(other_li) # 现在li为[1, 2, 3, 4, 5, 6] # 以in来检测列表中是否存在某元素 1 in li #=> True # 以len函数来检测列表长度 len(li) #=> 6 # 元组类似列表,但不可变 tup = (1, 2, 3) tup[0] #=> 1 try: tup[0] = 3 # 抛出一个TypeError异常 except TypeError: print "Tuples cannot be mutated." # 可以在元组上使用和列表一样的操作 len(tup) #=> 3 tup + (4, 5, 6) #=> (1, 2, 3, 4, 5, 6) tup[:2] #=> (1, 2) 2 in tup #=> True # 可以将元组解包到变量 a, b, c = (1, 2, 3) # 现在a等于1,b等于2,c等于3 # 如果你省略括号,默认也会创建元组 d, e, f = 4, 5, 6 # 看看两个变量互换值有多简单 e, d = d, e #现在d为5,e为4 # 字典存储映射关系 empty_dict = {} # 这是一个预先填充的字典 filled_dict = {"one": 1, "two": 2, "three": 3} # 以[]语法查找值 filled_dict['one'] #=> 1 # 以列表形式获取所有的键 filled_dict.keys() #=> ["three", "two", "one"] # 注意 - 字典键的顺序是不确定的 # 你的结果也许和上面的输出结果并不一致 # 以in来检测字典中是否存在某个键 "one" in filled_dict #=> True 1 in filled_dict #=> False # 试图使用某个不存在的键会抛出一个KeyError异常 filled_dict['four'] #=> 抛出KeyError异常 # 使用get方法来避免KeyError filled_dict.get("one") #=> 1 filled_dict.get("four") #=> None # get方法支持一个默认参数,不存在某个键时返回该默认参数值 filled_dict.get("one", 4) #=> 1 filled_dict.get("four", 4) #=> 4 # setdefault方法是一种添加新的键-值对到字典的安全方式 filled_dict.setdefault("five", 5) #filled_dict["five"]设置为5 filled_dict.setdefault("five", 6) #filled_dict["five"]仍为5 # 集合 empty_set = set() # 以几个值初始化一个集合 filled_set = set([1, 2, 2, 3, 4]) # filled_set现为set([1, 2, 3, 4, 5]) # 以&执行集合交运算 other_set = set([3, 4, 5, 6]) filled_set & other_set #=> set([3, 4, 5]) # 以|执行集合并运算 filled_set | other_set #=> set([1, 2, 3, 4, 5, 6]) # 以-执行集合差运算 set([1, 2, 3, 4]) - set([2, 3, 5]) #=> set([1, 4]) # 以in来检测集合中是否存在某个值 2 in filled_set #=> True 10 in filled_set #=> False #################################################### ## 3. 控制流程 #################################################### # 创建个变量 some_var = 5 # 以下是一个if语句。缩进在Python是有重要意义的。 # 打印 "some_var is smaller than 10" if some_var > 10: print "some_var is totally bigger than 10." elif some_var < 10: print "some_var is smaller than 10." else: print "some_var is indeed 10." """ For循环在列表上迭代 输出: dog is a mammal cat is a mammal mouse is a mammal """ for animal in ["dog", "cat", "mouse"]: # 可以使用%来插补格式化字符串 print "%s is a mammal" % animal """ while循环直到未满足某个条件。 输出: 0 1 2 3 """ x = 0 while x < 4: print x x += 1 # x = x + 1的一种简写 # 使用try/except块来处理异常 # 对Python 2.6及以上版本有效 try: # 使用raise来抛出一个错误 raise IndexError("This is an index error") except IndexError as e: pass # pass就是什么都不干。通常这里用来做一些恢复工作 # 对于Python 2.7及以下版本有效 try: raise IndexError("This is an index error") except IndexError, e: # 没有"as",以逗号替代 pass #################################################### ## 4. 函数 #################################################### # 使用def来创建新函数 def add(x, y): print "x is %s and y is %s" % (x, y) return x + y # 以一个return语句来返回值 # 以参数调用函数 add(5, 6) #=> 11 并输出 "x is 5 and y is 6" # 另一种调用函数的方式是关键字参数 add(x=5, y=6) # 关键字参数可以任意顺序输入 # 可定义接受可变数量的位置参数的函数 def varargs(*args): return args varargs(1, 2, 3) #=> (1, 2, 3) # 也可以定义接受可变数量关键字参数的函数 def keyword_args(**kwargs): return kwargs # 调用一下该函数看看会发生什么 keyword_args(big="foot", loch="ness") #=> {"big": "foo", "loch": "ness"} # 也可以一次性接受两种参数 def all_the_args(*args, **kwargs): print args print kwargs """ all_the_args(1, 2, a=3, b=4)输出: [1, 2] {"a": 3, "b": 4} """ # 在调用一个函数时也可以使用*和** args = (1, 2, 3, 4) kwargs = {"a": 3, "b": 4} foo(*args) #等价于foo(1, 2, 3, 4) foo(**kwargs) # 等价于foo(a=3, b=4) foo(*args, **kwargs) # 等价于foo(1, 2, 3, 4, a=3, b=4) # Python的函数是一等函数 def create_adder(x): def adder(y): return x + y return adder add_10 = create_adder(10) add_10(3) #=> 13 # 也有匿名函数 (lamda x: x > 2)(3) #=> True # 有一些内置的高阶函数 map(add_10, [1, 2, 3]) #=> [11, 12, 13] filter(lamda x: x > 5, [3, 4, 5, 6, 7]) #=>[6, 7] # 可以使用列表推导来实现映射和过滤 [add_10(i) for i in [1, 2, 3]] #=> [11, 13, 13] [x for x in [3, 4, 5, 6,7 ] if x > 5] #=> [6, 7] #################################################### ## 5. 类 #################################################### # 创建一个子类继承自object来得到一个类 class Human(object): # 类属性。在该类的所有示例之间共享 species = "H. sapiens" # 基本初始化构造方法 def __init__(self, name): # 将参数赋值给实例的name属性 self.name = name # 实例方法。所有示例方法都以self为第一个参数 def say(self, msg): return "%s: %s" % (self.name, msg) # 类方法由所有实例共享 # 以调用类为第一个参数进行调用 @classmethod def get_species(cls): return cls.species # 静态方法的调用不需要一个类或实例的引用 @staticmethod def grunt(): return "*grunt*" # 实例化一个类 i = Human(name="Ian") print i.say("hi") # 输出"Ian: hi" j = Human("Joel") print j.say("hello") # 输出"Joel: hello" # 调用类方法 i.get_species() #=> "H. sapiens" # 修改共享属性 Human.species = "H. neanderthalensis" i.get_species() #=> "H. neanderthalensis" j.get_species() #=> "H. neanderthalensis" # 调用静态方法 Human.grunt() #=> "*grunt*" {% endhighlight %}

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

To generate images through XML, you need to use graph libraries (such as Pillow and JFreeChart) as bridges to generate images based on metadata (size, color) in XML. The key to controlling the size of the image is to adjust the values of the <width> and <height> tags in XML. However, in practical applications, the complexity of XML structure, the fineness of graph drawing, the speed of image generation and memory consumption, and the selection of image formats all have an impact on the generated image size. Therefore, it is necessary to have a deep understanding of XML structure, proficient in the graphics library, and consider factors such as optimization algorithms and image format selection.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

XML formatting tools can type code according to rules to improve readability and understanding. When selecting a tool, pay attention to customization capabilities, handling of special circumstances, performance and ease of use. Commonly used tool types include online tools, IDE plug-ins, and command-line tools.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

There is no built-in sum function in C language, so it needs to be written by yourself. Sum can be achieved by traversing the array and accumulating elements: Loop version: Sum is calculated using for loop and array length. Pointer version: Use pointers to point to array elements, and efficient summing is achieved through self-increment pointers. Dynamically allocate array version: Dynamically allocate arrays and manage memory yourself, ensuring that allocated memory is freed to prevent memory leaks.
