python分析nignx访问日志脚本分享
#!/usr/bin/env python # coding=utf-8 #------------------------------------------------------ # Name: nginx 日志分析脚本 # Purpose: 此脚本只用来分析nginx的访问日志 # Version: 1.0 # Author: LEO # Created: 2013-05-07 # Modified: 2013-05-07 # Copyright: (c) LEO 2013 #------------------------------------------------------ import sys import time #该类是用来打印格式 class displayFormat(object): def format_size(self,size): '''''格式化流量单位''' KB = 1024 #KB -> B B是字节 MB = 1048576 #MB -> B GB = 1073741824 #GB -> B TB = 1099511627776 #TB -> B if size >= TB : size = str(size / TB) + 'T' elif size < KB : size = str(size) + 'B' elif size >= GB and size < TB: size = str(size / GB) + 'G' elif size >= MB and size < GB : size = str(size / MB) + 'M' else : size = str(size / KB) + 'K' return size #定义字符串格式化 formatstring = '%-15s %-10s %-12s %8s %10s %10s %10s %10s %10s %10s %10s' def transverse_line(self) : '''''输出横线''' print self.formatstring % ('-'*15,'-'*10,'-'*12,'-'*12,'-'*10,'-'*10,'-'*10,'-'*10,'-'*10,'-'*10,'-'*10) def head(self): '''''输出头部信息''' print self.formatstring % ('IP','Traffic','Times','Times%','200','404','500','403','302','304','503') def error_print(self) : '''''输出错误信息''' print print 'Usage : ' + sys.argv[0] + ' NginxLogFilePath [Number]' print sys.exit(1) def execut_time(self): '''''输出脚本执行的时间''' print print "Script Execution Time: %.3f second" % time.clock() print #该类是用来生成主机信息的字典 class hostInfo(object): host_info = ['200','404','500','302','304','503','403','times','size'] def __init__(self,host): self.host = host = {}.fromkeys(self.host_info,0) def increment(self,status_times_size,is_size): '''''该方法是用来给host_info中的各个值加1''' if status_times_size == 'times': self.host['times'] += 1 elif is_size: self.host['size'] = self.host['size'] + status_times_size else: self.host[status_times_size] += 1 def get_value(self,value): '''''该方法是取到各个主机信息中对应的值''' return self.host[value] #该类是用来分析文件 class fileAnalysis(object): def __init__(self): '''''初始化一个空字典''' self.report_dict = {} self.total_request_times,self.total_traffic,self.total_200, self.total_404,self.total_500,self.total_403,self.total_302, self.total_304,self.total_503 = 0,0,0,0,0,0,0,0,0 def split_eachline_todict(self,line): '''''分割文件中的每一行,并返回一个字典''' split_line = line.split() split_dict = {'remote_host':split_line[0],'status':split_line[8], 'bytes_sent':split_line[9],} return split_dict def generate_log_report(self,logfile): '''''读取文件,分析split_eachline_todict方法生成的字典''' for line in logfile: try: line_dict = self.split_eachline_todict(line) host = line_dict['remote_host'] status = line_dict['status'] except ValueError : continue except IndexError : continue if host not in self.report_dict : host_info_obj = hostInfo(host) self.report_dict[host] = host_info_obj else : host_info_obj = self.report_dict[host] host_info_obj.increment('times',False) if status in host_info_obj.host_info : host_info_obj.increment(status,False) try: bytes_sent = int(line_dict['bytes_sent']) except ValueError: bytes_sent = 0 host_info_obj.increment(bytes_sent,True) return self.report_dict def return_sorted_list(self,true_dict): '''''计算各个状态次数、流量总量,请求的总次数,并且计算各个状态的总量 并生成一个正真的字典,方便排序''' for host_key in true_dict : host_value = true_dict[host_key] times = host_value.get_value('times') self.total_request_times = self.total_request_times + times size = host_value.get_value('size') self.total_traffic = self.total_traffic + size o200 = host_value.get_value('200') o404 = host_value.get_value('404') o500 = host_value.get_value('500') o403 = host_value.get_value('403') o302 = host_value.get_value('302') o304 = host_value.get_value('304') o503 = host_value.get_value('503') true_dict[host_key] = {'200':o200,'404':o404,'500':o500, '403':o403,'302':o302,'304':o304, '503':o503,'times':times,'size':size} self.total_200 = self.total_200 + o200 self.total_404 = self.total_404 + o404 self.total_500 = self.total_500 + o500 self.total_302 = self.total_302 + o302 self.total_304 = self.total_304 + o304 self.total_503 = self.total_503 + o503 sorted_list = sorted(true_dict.items(),key=lambda t:(t[1]['times'], t[1]['size']),reverse=True) return sorted_list class Main(object): def main(self) : '''''主调函数''' display_format = displayFormat() arg_length = len(sys.argv) if arg_length == 1 : display_format.error_print() elif arg_length == 2 or arg_length == 3: infile_name = sys.argv[1] try : infile = open(infile_name,'r') if arg_length == 3 : lines = int(sys.argv[2]) else : lines = 0 except IOError,e : print print e display_format.error_print() except ValueError : print print "Please Enter A Volid Number !!" display_format.error_print() else : display_format.error_print() fileAnalysis_obj = fileAnalysis() not_true_dict = fileAnalysis_obj.generate_log_report(infile) log_report = fileAnalysis_obj.return_sorted_list(not_true_dict) total_ip = len(log_report) if lines : log_report = log_report[0:lines] infile.close() print total_traffic = display_format.format_size(fileAnalysis_obj.total_traffic) total_request_times = fileAnalysis_obj.total_request_times print 'Total IP: %s Total Traffic: %s Total Request Times: %d' % (total_ip,total_traffic,total_request_times) print display_format.head() display_format.transverse_line() for host in log_report : times = host[1]['times'] times_percent = (float(times) / float(fileAnalysis_obj.total_request_times)) * 100 print display_format.formatstring % (host[0], display_format.format_size(host[1]['size']), times,str(times_percent)[0:5], host[1]['200'],host[1]['404'], host[1]['500'],host[1]['403'], host[1]['302'],host[1]['304'],host[1]['503']) if (not lines) or total_ip == lines : display_format.transverse_line() print display_format.formatstring % (total_ip,total_traffic, total_request_times,'100%', fileAnalysis_obj.total_200, fileAnalysis_obj.total_404, fileAnalysis_obj.total_500, fileAnalysis_obj.total_403, fileAnalysis_obj.total_302, fileAnalysis_obj.total_304, fileAnalysis_obj.total_503) display_format.execut_time() if __name__ == '__main__': main_obj = Main() main_obj.main()

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics

An application that converts XML directly to PDF cannot be found because they are two fundamentally different formats. XML is used to store data, while PDF is used to display documents. To complete the transformation, you can use programming languages and libraries such as Python and ReportLab to parse XML data and generate PDF documents.

To convert XML images, you need to determine the XML data structure first, then select a suitable graphical library (such as Python's matplotlib) and method, select a visualization strategy based on the data structure, consider the data volume and image format, perform batch processing or use efficient libraries, and finally save it as PNG, JPEG, or SVG according to the needs.

There is no APP that can convert all XML files into PDFs because the XML structure is flexible and diverse. The core of XML to PDF is to convert the data structure into a page layout, which requires parsing XML and generating PDF. Common methods include parsing XML using Python libraries such as ElementTree and generating PDFs using ReportLab library. For complex XML, it may be necessary to use XSLT transformation structures. When optimizing performance, consider using multithreaded or multiprocesses and select the appropriate library.

XML beautification is essentially improving its readability, including reasonable indentation, line breaks and tag organization. The principle is to traverse the XML tree, add indentation according to the level, and handle empty tags and tags containing text. Python's xml.etree.ElementTree library provides a convenient pretty_xml() function that can implement the above beautification process.

The speed of mobile XML to PDF depends on the following factors: the complexity of XML structure. Mobile hardware configuration conversion method (library, algorithm) code quality optimization methods (select efficient libraries, optimize algorithms, cache data, and utilize multi-threading). Overall, there is no absolute answer and it needs to be optimized according to the specific situation.

Use most text editors to open XML files; if you need a more intuitive tree display, you can use an XML editor, such as Oxygen XML Editor or XMLSpy; if you process XML data in a program, you need to use a programming language (such as Python) and XML libraries (such as xml.etree.ElementTree) to parse.

It is impossible to complete XML to PDF conversion directly on your phone with a single application. It is necessary to use cloud services, which can be achieved through two steps: 1. Convert XML to PDF in the cloud, 2. Access or download the converted PDF file on the mobile phone.

It is not easy to convert XML to PDF directly on your phone, but it can be achieved with the help of cloud services. It is recommended to use a lightweight mobile app to upload XML files and receive generated PDFs, and convert them with cloud APIs. Cloud APIs use serverless computing services, and choosing the right platform is crucial. Complexity, error handling, security, and optimization strategies need to be considered when handling XML parsing and PDF generation. The entire process requires the front-end app and the back-end API to work together, and it requires some understanding of a variety of technologies.
