Table of Contents
推荐几个开源的微信开发项目,开源信开发项目
Home php教程 php手册 推荐几个开源的微信开发项目,开源信开发项目

推荐几个开源的微信开发项目,开源信开发项目

Jun 13, 2016 am 09:18 AM
Open source WeChat development

推荐几个开源的微信开发项目,开源信开发项目

 下面向大家介绍的是微信开发项目里使用的3款基于PHP的开发框架,相信一定对你的开发工作有所帮助。

  1. Wechat-PHP-SDK

  微信公众平台 PHP 开发包,细化各项接口操作,支持链式调用。

  Github托管地址:dodgepudding/wechat-php-sdk

  2. 微信公众平台 PHP SDK

  简单的微信公众平台 PHP SDK ,通过调用相应的接口,使你可以轻松地开发微信 App 。

  Github托管地址:netputer/wechat-php-sdk

  3. Wechat-php

  本微信SDK实现了被动响应的官方 API 已经主动发送消息给订阅用户,主动批量发送消息给订阅用户。

  Github托管地址:ligboy/Wechat-php

  非常强大的微信公众平台开发框架推荐中有官方和第三方开发者提供的丰富的插件,是免费并且成熟的框架,更多的信息可以点击这里:

微擎:http://www.we7.cc/
微笑:http://www.sylai.com/
weiphp:http://www.weiphp.cn/

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

Ten recommended open source free text annotation tools Ten recommended open source free text annotation tools Mar 26, 2024 pm 08:20 PM

Text annotation is the work of corresponding labels or tags to specific content in text. Its main purpose is to provide additional information to the text for deeper analysis and processing, especially in the field of artificial intelligence. Text annotation is crucial for supervised machine learning tasks in artificial intelligence applications. It is used to train AI models to help more accurately understand natural language text information and improve the performance of tasks such as text classification, sentiment analysis, and language translation. Through text annotation, we can teach AI models to recognize entities in text, understand context, and make accurate predictions when new similar data appears. This article mainly recommends some better open source text annotation tools. 1.LabelStudiohttps://github.com/Hu

15 recommended open source free image annotation tools 15 recommended open source free image annotation tools Mar 28, 2024 pm 01:21 PM

Image annotation is the process of associating labels or descriptive information with images to give deeper meaning and explanation to the image content. This process is critical to machine learning, which helps train vision models to more accurately identify individual elements in images. By adding annotations to images, the computer can understand the semantics and context behind the images, thereby improving the ability to understand and analyze the image content. Image annotation has a wide range of applications, covering many fields, such as computer vision, natural language processing, and graph vision models. It has a wide range of applications, such as assisting vehicles in identifying obstacles on the road, and helping in the detection and diagnosis of diseases through medical image recognition. . This article mainly recommends some better open source and free image annotation tools. 1.Makesens

Recommended: Excellent JS open source face detection and recognition project Recommended: Excellent JS open source face detection and recognition project Apr 03, 2024 am 11:55 AM

Face detection and recognition technology is already a relatively mature and widely used technology. Currently, the most widely used Internet application language is JS. Implementing face detection and recognition on the Web front-end has advantages and disadvantages compared to back-end face recognition. Advantages include reducing network interaction and real-time recognition, which greatly shortens user waiting time and improves user experience; disadvantages include: being limited by model size, the accuracy is also limited. How to use js to implement face detection on the web? In order to implement face recognition on the Web, you need to be familiar with related programming languages ​​and technologies, such as JavaScript, HTML, CSS, WebRTC, etc. At the same time, you also need to master relevant computer vision and artificial intelligence technologies. It is worth noting that due to the design of the Web side

The source code of 25 AI agents is now public, inspired by Stanford's 'Virtual Town' and 'Westworld' The source code of 25 AI agents is now public, inspired by Stanford's 'Virtual Town' and 'Westworld' Aug 11, 2023 pm 06:49 PM

Audiences familiar with "Westworld" know that this show is set in a huge high-tech adult theme park in the future world. The robots have similar behavioral capabilities to humans, and can remember what they see and hear, and repeat the core storyline. Every day, these robots will be reset and returned to their initial state. After the release of the Stanford paper "Generative Agents: Interactive Simulacra of Human Behavior", this scenario is no longer limited to movies and TV series. AI has successfully reproduced this scene in Smallville's "Virtual Town" 》Overview map paper address: https://arxiv.org/pdf/2304.03442v1.pdf

Alibaba 7B multi-modal document understanding large model wins new SOTA Alibaba 7B multi-modal document understanding large model wins new SOTA Apr 02, 2024 am 11:31 AM

New SOTA for multimodal document understanding capabilities! Alibaba's mPLUG team released the latest open source work mPLUG-DocOwl1.5, which proposed a series of solutions to address the four major challenges of high-resolution image text recognition, general document structure understanding, instruction following, and introduction of external knowledge. Without further ado, let’s look at the effects first. One-click recognition and conversion of charts with complex structures into Markdown format: Charts of different styles are available: More detailed text recognition and positioning can also be easily handled: Detailed explanations of document understanding can also be given: You know, "Document Understanding" is currently An important scenario for the implementation of large language models. There are many products on the market to assist document reading. Some of them mainly use OCR systems for text recognition and cooperate with LLM for text processing.

Single card running Llama 70B is faster than dual card, Microsoft forced FP6 into A100 | Open source Single card running Llama 70B is faster than dual card, Microsoft forced FP6 into A100 | Open source Apr 29, 2024 pm 04:55 PM

FP8 and lower floating point quantification precision are no longer the "patent" of H100! Lao Huang wanted everyone to use INT8/INT4, and the Microsoft DeepSpeed ​​team started running FP6 on A100 without official support from NVIDIA. Test results show that the new method TC-FPx's FP6 quantization on A100 is close to or occasionally faster than INT4, and has higher accuracy than the latter. On top of this, there is also end-to-end large model support, which has been open sourced and integrated into deep learning inference frameworks such as DeepSpeed. This result also has an immediate effect on accelerating large models - under this framework, using a single card to run Llama, the throughput is 2.65 times higher than that of dual cards. one

Just released! An open source model for generating anime-style images with one click Just released! An open source model for generating anime-style images with one click Apr 08, 2024 pm 06:01 PM

Let me introduce to you the latest AIGC open source project-AnimagineXL3.1. This project is the latest iteration of the anime-themed text-to-image model, aiming to provide users with a more optimized and powerful anime image generation experience. In AnimagineXL3.1, the development team focused on optimizing several key aspects to ensure that the model reaches new heights in performance and functionality. First, they expanded the training data to include not only game character data from previous versions, but also data from many other well-known anime series into the training set. This move enriches the model's knowledge base, allowing it to more fully understand various anime styles and characters. AnimagineXL3.1 introduces a new set of special tags and aesthetics

1.3ms takes 1.3ms! Tsinghua's latest open source mobile neural network architecture RepViT 1.3ms takes 1.3ms! Tsinghua's latest open source mobile neural network architecture RepViT Mar 11, 2024 pm 12:07 PM

Paper address: https://arxiv.org/abs/2307.09283 Code address: https://github.com/THU-MIG/RepViTRepViT performs well in the mobile ViT architecture and shows significant advantages. Next, we explore the contributions of this study. It is mentioned in the article that lightweight ViTs generally perform better than lightweight CNNs on visual tasks, mainly due to their multi-head self-attention module (MSHA) that allows the model to learn global representations. However, the architectural differences between lightweight ViTs and lightweight CNNs have not been fully studied. In this study, the authors integrated lightweight ViTs into the effective

See all articles