Home Backend Development C++ The Evolution of C++ Syntax and Design Patterns: From Old Versions to Modern Styles

The Evolution of C++ Syntax and Design Patterns: From Old Versions to Modern Styles

May 31, 2024 pm 05:45 PM
Design Patterns c++

Over time, C's syntax and design patterns have evolved significantly to adapt to changing programming needs. Key changes include: Syntax improvements: auto keyword, scoping statements, and template metaprogramming. Design Patterns: Singleton, Factory Method and Dependency Injection. Practical case: Implementing a shopping cart class using modern C syntax and design patterns, demonstrating the practical application of the auto keyword, scope limiting statements, singleton mode and dependency injection mode.

The Evolution of C++ Syntax and Design Patterns: From Old Versions to Modern Styles

The Evolution of C Syntax and Design Patterns: From Old Versions to Modern Styles

Over time, C syntax and Design patterns have evolved significantly, reflecting the changing landscape of programming languages ​​and the evolving needs of developers. This article will explore some of the key changes that made the transition from older versions of C to the modern style.

Syntax improvements

  • #auto keyword: The auto keyword allows the compiler to infer variable types, thereby eliminating the need to manually specify types Needed to make the code more concise and clear.
  • Scope Qualification Statement: Scope Qualification Statement (using namespace std;) allows direct access to standard library functions and classes without specifying a namespace prefix.
  • Template metaprogramming: Template metaprogramming allows operations to be performed at compile time, thereby improving the efficiency and maintainability of the code.
// 旧版本:
int sum(int a, int b) {
  return a + b;
}

// 现代风格:
auto sum(auto a, auto b) {
  return a + b;
}
Copy after login

Design pattern

  • Single case: The singleton pattern ensures that only one instance of a specific class exists, simplifying Resource access across applications.
  • Factory method: The factory method pattern provides an interface for creating objects without specifying a specific class, thereby improving the flexibility of the code.
  • Dependency Injection: The dependency injection mode minimizes the coupling between objects by injecting dependencies at runtime.
// 旧版本:
Singleton* getSingleton() {
  static Singleton instance;
  return &instance;
}

// 现代风格:
class Singleton {
public:
  static Singleton& getInstance() {
    static Singleton instance;
    return instance;
  }
};
Copy after login

Practical Case

Consider an application that simulates an online store. The following code snippet demonstrates the use of modern C syntax and design patterns to implement a shopping cart class:

#include <memory>

class Product {
public:
  Product(int id, std::string name, double price) {
    this->id = id;
    this->name = name;
    this->price = price;
  }

  int getId() const { return id; }
  std::string getName() const { return name; }
  double getPrice() const { return price; }

private:
  int id;
  std::string name;
  double price;
};

class Cart {
public:
  Cart() { Init(); }

  void addItem(std::shared_ptr<Product> product) {
    this->products.push_back(product);
  }

  double getTotal() const {
    return std::accumulate(products.begin(), products.end(), 0.0,
                          [](double acc, std::shared_ptr<Product> p) {
                            return acc + p->getPrice();
                          });
  }

private:
  void Init() {
    // Dependency injection for testing
  }

  std::vector<std::shared_ptr<Product>> products;
};
Copy after login

This case demonstrates the use of the auto keyword, scoping statements, singleton pattern and dependency injection pattern in modern C applications practical applications.

Conclusion

By adopting modern syntax and design patterns, C developers can create more concise, maintainable, and extensible code. These evolutions cater to the changing development landscape and provide developers with more powerful tools to cope with evolving application needs.

The above is the detailed content of The Evolution of C++ Syntax and Design Patterns: From Old Versions to Modern Styles. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

C++ object layout is aligned with memory to optimize memory usage efficiency C++ object layout is aligned with memory to optimize memory usage efficiency Jun 05, 2024 pm 01:02 PM

C++ object layout and memory alignment optimize memory usage efficiency: Object layout: data members are stored in the order of declaration, optimizing space utilization. Memory alignment: Data is aligned in memory to improve access speed. The alignas keyword specifies custom alignment, such as a 64-byte aligned CacheLine structure, to improve cache line access efficiency.

How to implement a custom comparator in C++ STL? How to implement a custom comparator in C++ STL? Jun 05, 2024 am 11:50 AM

Implementing a custom comparator can be accomplished by creating a class that overloads operator(), which accepts two parameters and indicates the result of the comparison. For example, the StringLengthComparator class sorts strings by comparing their lengths: Create a class and overload operator(), returning a Boolean value indicating the comparison result. Using custom comparators for sorting in container algorithms. Custom comparators allow us to sort or compare data based on custom criteria, even if we need to use custom comparison criteria.

How to implement the Strategy Design Pattern in C++? How to implement the Strategy Design Pattern in C++? Jun 06, 2024 pm 04:16 PM

The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Similarities and Differences between Golang and C++ Similarities and Differences between Golang and C++ Jun 05, 2024 pm 06:12 PM

Golang and C++ are garbage collected and manual memory management programming languages ​​respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

How to copy a C++ STL container? How to copy a C++ STL container? Jun 05, 2024 am 11:51 AM

There are three ways to copy a C++ STL container: Use the copy constructor to copy the contents of the container to a new container. Use the assignment operator to copy the contents of the container to the target container. Use the std::copy algorithm to copy the elements in the container.

What are the underlying implementation principles of C++ smart pointers? What are the underlying implementation principles of C++ smart pointers? Jun 05, 2024 pm 01:17 PM

C++ smart pointers implement automatic memory management through pointer counting, destructors, and virtual function tables. The pointer count keeps track of the number of references, and when the number of references drops to 0, the destructor releases the original pointer. Virtual function tables enable polymorphism, allowing specific behaviors to be implemented for different types of smart pointers.

How to implement C++ multi-thread programming based on the Actor model? How to implement C++ multi-thread programming based on the Actor model? Jun 05, 2024 am 11:49 AM

C++ multi-threaded programming implementation based on the Actor model: Create an Actor class that represents an independent entity. Set the message queue where messages are stored. Defines the method for an Actor to receive and process messages from the queue. Create Actor objects and start threads to run them. Send messages to Actors via the message queue. This approach provides high concurrency, scalability, and isolation, making it ideal for applications that need to handle large numbers of parallel tasks.

How to implement nested exception handling in C++? How to implement nested exception handling in C++? Jun 05, 2024 pm 09:15 PM

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

See all articles