


C++ virtual function table and polymorphic implementation, how to avoid memory waste
Virtual base classes can optimize virtual function table memory overhead by allowing inheritance from multiple base classes without creating additional virtual function tables. In the optimized code, the shape base class no longer has a virtual function table, and the circle and rectangle classes share the same virtual function table, thus reducing memory consumption.
C++ virtual function table and polymorphic implementation: avoiding memory waste
Introduction
Polymorphism is a key feature in object-oriented programming that allows objects to exhibit different behaviors depending on their type. In C++, polymorphism is implemented through virtual function tables. However, vtables can cause memory waste, especially if there are a large number of objects.
Virtual function table
The virtual function table is a table that contains pointers to virtual functions. When a virtual function is called, the compiler uses the virtual function table to find the correct function implementation. This ensures that the object can call the correct functions defined for its type.
Waste of memory
The virtual function table takes up memory space. For each class, a vtable is created, even if there are no virtual functions in the class. For applications with a large number of objects, this can cause significant memory overhead.
Optimization: Use virtual base classes
One way to avoid virtual function table memory waste is to use virtual base classes. Virtual base classes allow inheritance from multiple base classes without creating additional virtual function tables.
Practical case
Consider the following class hierarchy:
class Shape { public: virtual void draw() = 0; }; class Circle : public Shape { public: void draw() override { // Draw a circle } }; class Rectangle : public Shape { public: void draw() override { // Draw a rectangle } };
Before optimization:
In the above In the implementation, Shape
, Circle
, and Rectangle
have their own vtables. This wastes memory space because Shape
has no virtual functions.
After optimization through virtual base class:
class ShapeBase { public: virtual void draw() = 0; }; class Shape : public ShapeBase { }; class Circle : public Shape { public: void draw() override { // Draw a circle } }; class Rectangle : public Shape { public: void draw() override { // Draw a rectangle } };
Optimization result:
By using virtual base classShapeBase
, Circle
and Rectangle
can now share the same vtable. This eliminates the Shape
vtable, thereby reducing memory overhead.
Conclusion
By using virtual base classes, you can avoid the memory waste caused by the virtual function table in C++. Doing so can improve memory efficiency, especially in applications with a large number of objects.
The above is the detailed content of C++ virtual function table and polymorphic implementation, how to avoid memory waste. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.
