


Detailed explanation of synchronization primitives in C++ concurrent programming
In C multi-threaded programming, the role of synchronization primitives is to ensure the correctness of multiple threads accessing shared resources. It includes: Mutex (Mutex): protects shared resources and prevents simultaneous access; condition variables (Condition Variable): The thread waits for specific conditions to be met before continuing execution; Atomic operation: ensures that the operation is executed in an uninterruptible manner.
C Detailed explanation of synchronization primitives in concurrent programming
In multi-thread programming, synchronization primitives are crucial , which can ensure the correctness when multiple threads access shared resources. C provides a rich set of synchronization primitives, including mutex locks, condition variables, and atomic operations.
Mutex (Mutex)
Mutex is a synchronization mechanism used to protect shared resources. When a thread acquires a mutex lock, other threads will be blocked until the mutex lock is released. In C, you can use the std::mutex
class to implement a mutex lock:
std::mutex mtx; // ... { // 获取互斥锁 std::lock_guard<std::mutex> lock(mtx); // 临界区 } // 互斥锁在离开作用域时自动释放
Condition Variable
Condition variable Allows a thread to wait for a specific condition to be met before continuing execution. In C, you can use the std::condition_variable
class to implement condition variables:
std::condition_variable cv; // ... { std::unique_lock<std::mutex> lock(mtx); // 等待条件满足 cv.wait(lock); // 执行条件满足后要执行的代码 }
Atomic operations
Atomic operations guarantee that an operation can Executed in interrupt mode. In C, you can use the atomic library to perform atomic operations:
std::atomic<int> counter; // ... counter++; // 原子地增加 counter 的值
Practical example
Consider a program with a shared counter and a writing thread. The writing thread needs to atomically increment the counter, while the reading thread needs to read the counter protectedly:
std::atomic<int> counter; std::mutex mtx; // 写入线程 void write_thread() { while (true) { // 原子地增加计数器 counter++; } } // 读取线程 void read_thread() { while (true) { // 保护地读取计数器 std::lock_guard<std::mutex> lock(mtx); std::cout << "Counter: " << counter << std::endl; } } int main() { std::thread t1(write_thread); std::thread t2(read_thread); t1.join(); t2.join(); return 0; }
The above is the detailed content of Detailed explanation of synchronization primitives in C++ concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

In multi-threaded C++, exception handling is implemented through the std::promise and std::future mechanisms: use the promise object to record the exception in the thread that throws the exception. Use a future object to check for exceptions in the thread that receives the exception. Practical cases show how to use promises and futures to catch and handle exceptions in different threads.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.
