How to deal with hash collisions when using C++ STL?
C++ STL hash conflicts are handled in the following ways: Chain address method: Use a linked list to store conflicting elements, which has good applicability. Open addressing method: Find available locations in the bucket to store elements. The sub-methods are: Linear detection: Find the next available location in sequence. Quadratic Detection: Search by skipping positions in quadratic form.
How to handle hash conflicts in C++ STL
When using the hash table of the C++ Standard Template Library (STL), conflicts are inevitable because Multiple keys may hash to the same bucket. To handle conflicts, STL provides the following methods:
Chain address method
The chain address method uses a linked list to store elements hashed into the same bucket. When a conflict occurs, a new linked list node is created and the element is added to the linked list. This is the most commonly used collision handling method because it handles dense hash tables well.
#include <unordered_map> #include <list> int main() { std::unordered_map<int, std::list<int>> hash_table; hash_table[10].push_back(100); hash_table[10].push_back(200); // 迭代哈希到 10 的键 for (auto& item : hash_table[10]) { std::cout << item << " "; // 输出 100 200 } return 0; }
Open addressing method
The open addressing method will not create new nodes when a conflict occurs. Instead, it looks for the next available location in the bucket to store the element. There are several open addressing methods, the most common of which are linear probing and quadratic probing.
Linear detection:
#include <unordered_map> int main() { std::unordered_map<int, int> hash_table; hash_table[10] = 100; // 插入 (10, 100) hash_table[10] = 200; // 更新 (10, 200) // 访问更新后的值 std::cout << hash_table[10] << std::endl; // 输出 200 return 0; }
Secondary detection:
#include <unordered_map> int main() { std::unordered_map<int, int, std::hash<int>, std::equal_to<int>, QuadraticProbing<int, int>> hash_table; hash_table[10] = 100; // 插入 (10, 100) hash_table[10] = 200; // 更新 (10, 200) // 访问更新后的值 std::cout << hash_table[10] << std::endl; // 输出 200 return 0; }
Which conflict handling method is chosen depends on the hash table expected loading factor. The chain addressing method is generally more suitable for dense hash tables, while the open addressing method is more suitable for sparse hash tables.
The above is the detailed content of How to deal with hash collisions when using C++ STL?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Implementing a custom comparator can be accomplished by creating a class that overloads operator(), which accepts two parameters and indicates the result of the comparison. For example, the StringLengthComparator class sorts strings by comparing their lengths: Create a class and overload operator(), returning a Boolean value indicating the comparison result. Using custom comparators for sorting in container algorithms. Custom comparators allow us to sort or compare data based on custom criteria, even if we need to use custom comparison criteria.

You can get the number of elements in a container by using the container's size() member function. For example, the size() function of the vector container returns the number of elements, the size() function of the list container returns the number of elements, the length() function of the string container returns the number of characters, and the capacity() function of the deque container returns the number of allocated memory blocks.

Using STL function objects can improve reusability and includes the following steps: Define the function object interface (create a class and inherit from std::unary_function or std::binary_function) Overload operator() to define the function behavior in the overloaded operator() Implement the required functionality using function objects via STL algorithms (such as std::transform)

The methods for handling C++STL hash conflicts are: chain address method: using linked lists to store conflicting elements, which has good applicability. Open addressing method: Find available locations in the bucket to store elements. The sub-methods are: Linear detection: Find the next available location in sequence. Quadratic Detection: Search by skipping positions in quadratic form.

By using the C++ Standard Template Library (STL), we can improve the readability and maintainability of the code: 1. Use containers to replace primitive arrays to improve type safety and memory management; 2. Use algorithms to simplify complex tasks and improve efficiency; 3. .Use iterators to enhance traversal and simplify code; 4.Use smart pointers to improve memory management and reduce memory leaks and dangling pointers.

The most common container types in C++STL are Vector, List, Deque, Set, Map, Stack and Queue. These containers provide solutions for different data storage needs, such as dynamic arrays, doubly linked lists, and key- and value-based associative containers. In practice, we can use STL containers to organize and access data efficiently, such as storing student grades.

How to sort STL containers in C++: Use the sort() function to sort containers in place, such as std::vector. Using the ordered containers std::set and std::map, elements are automatically sorted on insertion. For a custom sort order, you can use a custom comparator class, such as sorting a vector of strings alphabetically.

C++STL (StandardTemplateLibrary) is one of the standard libraries of the C++ programming language. It contains a series of standard data structures and algorithms. In STL, iterator (iterator) is a very important tool for traversing and accessing in STL containers. An iterator is a pointer-like object that can point to an element in a container (such as vector, list, set, map, etc.) and can be moved in the container.
