Home Backend Development C++ Big data processing in C++ technology: How to use stream processing technology to process big data streams?

Big data processing in C++ technology: How to use stream processing technology to process big data streams?

Jun 01, 2024 pm 10:34 PM
big data processing Stream processing

Stream processing technology is used for big data processing. Stream processing is a technology that processes data streams in real time. In C, Apache Kafka can be used for stream processing. Stream processing provides real-time data processing, scalability, and fault tolerance. This example uses Apache Kafka to read data from a Kafka topic and calculate the average.

Big data processing in C++ technology: How to use stream processing technology to process big data streams?

Big data processing in C technology: using stream processing technology to process big data streams

Stream processing is a kind of unbounded processing Data streaming technology enables developers to process and analyze data instantly as it is generated. In C, we can use stream processing frameworks such as Apache Kafka to achieve this functionality.

Advantages of Stream Processing Framework

  • Real-time data processing: Process data immediately without storage and batch processing
  • Scalability: Easy Scaling to handle large data streams
  • Fault tolerance: Ensure data will not be lost through fault tolerance mechanism

Practical case: Using Apache Kafka for stream processing

Let us use Apache Kafka to create a C stream processing application that will read data from a Kafka topic and calculate the average value in the data stream.

// 头文件
#include <kafka/apache_kafka.h>
#include <thread>
#include <atomic>

// 定义原子平均值计数器
std::atomic<double> avg_count(0.0);

// 流处理消费者线程
void consume_thread(const std::string& topic, rd_kafka_t* rk) {
  // 创建消费者组
  rd_kafka_consumer_group_t* consumer_group =
      rd_kafka_consumer_group_join(rk, topic.c_str(),
                                  rd_kafka_topic_partition_list_new(1), NULL);

  while (true) {
    // 订阅主题
    rd_kafka_message_t* message;
    rd_kafka_resp_err_t consumer_err =
        rd_kafka_consumer_group_poll(consumer_group, 10000, &message);
    if (consumer_err == RD_KAFKA_RESP_ERR__PARTITION_EOF) {
      rd_kafka_consumer_group_unjoin(consumer_group);
      rd_kafka_consumer_group_destroy(consumer_group);
      return;
    } else if (consumer_err != RD_KAFKA_RESP_ERR_NO_ERROR) {
      std::cerr << "Consumer error: " << rd_kafka_err2str(consumer_err) << "\n";
      continue;
    }

    // 提取并处理数据
    if (message) {
      // 提取值
      const char* message_str = static_cast<const char*>(message->payload);
      int value = std::atoi(message_str);

      // 更新原子平均值计数器
      avg_count += (static_cast<double>(value) - avg_count) /
                     (avg_count.fetch_add(1) + 1);

      if (avg_count >= 1e6) {
        std::cout << "Average: " << avg_count << "\n";
      }
    }

    // 提交偏移量
    rd_kafka_message_destroy(message);
  }
}

int main() {
  // 初始化 Kafka 实例
  rd_kafka_t* rk = rd_kafka_new(RD_KAFKA_CONSUMER, NULL, NULL, NULL);
  if (!rk) {
    std::cerr << "Failed to initialize Kafka instance\n";
    return 1;
  }

  // 配置 Kafka 实例
  char error_str[512];
  if (rd_kafka_conf_set(rk, "bootstrap.servers", "localhost:9092",
                          error_str, sizeof(error_str)) != RD_KAFKA_CONF_OK) {
    std::cerr << "Failed to set Kafka configuration: " << error_str << "\n";
    rd_kafka_destroy(rk);
    return 1;
  }

  // 创建流处理消费者线程
  std::thread consumer_thr(consume_thread, "test-topic", rk);

  // 等待消费者线程
  consumer_thr.join();

  // 销毁 Kafka 实例
  rd_kafka_destroy(rk);

  return 0;
}
Copy after login

Running this code will create a streaming application that reads data from the Kafka topic "test-topic" and calculates a per second average.

The above is the detailed content of Big data processing in C++ technology: How to use stream processing technology to process big data streams?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How to implement statistical charts of massive data under the Vue framework How to implement statistical charts of massive data under the Vue framework Aug 25, 2023 pm 04:20 PM

How to implement statistical charts of massive data under the Vue framework Introduction: In recent years, data analysis and visualization have played an increasingly important role in all walks of life. In front-end development, charts are one of the most common and intuitive ways of displaying data. The Vue framework is a progressive JavaScript framework for building user interfaces. It provides many powerful tools and libraries that can help us quickly build charts and display massive data. This article will introduce how to implement statistical charts of massive data under the Vue framework, and attach

How to use Spring Boot to build big data processing applications How to use Spring Boot to build big data processing applications Jun 23, 2023 am 09:07 AM

With the advent of the big data era, more and more companies are beginning to understand and recognize the value of big data and apply it to business. The problem that comes with it is how to handle this large flow of data. In this case, big data processing applications have become something that every enterprise must consider. For developers, how to use SpringBoot to build an efficient big data processing application is also a very important issue. SpringBoot is a very popular Java framework that allows

How to use PHP crawler to crawl big data How to use PHP crawler to crawl big data Jun 14, 2023 pm 12:52 PM

With the advent of the data era and the diversification of data volume and data types, more and more companies and individuals need to obtain and process massive amounts of data. At this time, crawler technology becomes a very effective method. This article will introduce how to use PHP crawler to crawl big data. 1. Introduction to crawlers Crawlers are a technology that automatically obtains Internet information. The principle is to automatically obtain and parse website content on the Internet by writing programs, and capture the required data for processing or storage. In the evolution of crawler programs, many mature

Big data processing in C++ technology: How to use graph databases to store and query large-scale graph data? Big data processing in C++ technology: How to use graph databases to store and query large-scale graph data? Jun 03, 2024 pm 12:47 PM

C++ technology can handle large-scale graph data by leveraging graph databases. Specific steps include: creating a TinkerGraph instance, adding vertices and edges, formulating a query, obtaining the result value, and converting the result into a list.

High concurrency and big data processing technology in Go language High concurrency and big data processing technology in Go language Jun 04, 2023 pm 11:31 PM

With the rapid development of Internet technology, more and more applications need to handle large amounts of data and concurrent access requests. In order to meet these challenges, the Go language emerged as the times require and has become a language extremely suitable for high concurrency and big data processing. This article will introduce high concurrency and big data processing technology in Go language. 1. High concurrency processing technology Goroutine is a unique lightweight thread implementation in the Go language, occupying very little memory space and system resources. Using coroutines can easily implement tens of thousands of concurrently executed tasks, with

Big data processing skills in C++ Big data processing skills in C++ Aug 22, 2023 pm 01:28 PM

C++ is an efficient programming language that can handle various types of data. It is suitable for processing large amounts of data, but if proper techniques are not used to handle large data, the program can become very slow and unstable. In this article, we will introduce some tips for working with big data in C++. 1. Use dynamic memory allocation In C++, the memory allocation of variables can be static or dynamic. Static memory allocation allocates memory space before the program runs, while dynamic memory allocation allocates memory space as needed while the program is running. When dealing with large

How to use PHP and Hadoop for big data processing How to use PHP and Hadoop for big data processing Jun 19, 2023 pm 02:24 PM

As the amount of data continues to increase, traditional data processing methods can no longer handle the challenges brought by the big data era. Hadoop is an open source distributed computing framework that solves the performance bottleneck problem caused by single-node servers in big data processing through distributed storage and processing of large amounts of data. PHP is a scripting language that is widely used in web development and has the advantages of rapid development and easy maintenance. This article will introduce how to use PHP and Hadoop for big data processing. What is HadoopHadoop is

Big data processing in C++ technology: How to use stream processing technology to process big data streams? Big data processing in C++ technology: How to use stream processing technology to process big data streams? Jun 01, 2024 pm 10:34 PM

Stream processing technology is used for big data processing. Stream processing is a technology that processes data streams in real time. In C++, Apache Kafka can be used for stream processing. Stream processing provides real-time data processing, scalability, and fault tolerance. This example uses ApacheKafka to read data from a Kafka topic and calculate the average.

See all articles