


How to deal with high concurrency scenarios in Golang technical performance optimization?
Golang high concurrency performance optimization tips: Synchronization and mutual exclusion: Use mutex (Mutex) and wait group (WaitGroup) to synchronize shared resources to ensure the safety of concurrent access. Channel: Use unbuffered channels to efficiently transfer data between goroutines and avoid shared memory problems. Goroutine pool: Reuse existing goroutines to reduce the impact of intensive creation and destruction overhead on performance.
Golang technical performance optimization: cleverly deal with high concurrency scenarios
In Golang applications, high concurrency scenarios usually bring performance Bottlenecks, handling them properly is crucial. This article will explore practical tips for optimizing the performance of high-concurrency scenarios in the Golang technology stack.
Synchronization and mutual exclusion
In concurrent scenarios, the synchronization mechanism is crucial. Proper use of the concurrency primitives in Go's sync
package (for example, Mutex
and WaitGroup
) can ensure safe and ordered access to shared resources.
Practical case:
var count int var lock sync.Mutex func increment() { lock.Lock() count++ lock.Unlock() } func decrement() { lock.Lock() count-- lock.Unlock() } func main() { for i := 0; i < 100000; i++ { go increment() go decrement() } fmt.Println("The final count is", count) // 输出:0 }
The above code uses a mutex lock to ensure resource security under concurrent operations (count
).
Channel
Pipeline is a powerful communication mechanism that can efficiently coordinate concurrent operations. They allow data to be safely passed between goroutines, thus avoiding potential problems with shared memory.
Practical case:
package main import ( "fmt" "sync" ) func main() { var wg sync.WaitGroup wg.Add(2) ch := make(chan int) // 创建一个无缓冲通道 go func() { defer wg.Done() ch <- 1 // 将数据发送到通道 }() go func() { defer wg.Done() data := <-ch // 从通道中接收数据 fmt.Println("Received data:", data) }() wg.Wait() }
This code uses channels to synchronize two goroutines to ensure reliable transmission of data.
Goroutine Pool
Creating and destroying goroutines will bring additional overhead, and intensive creation of goroutines may affect performance. The goroutine pool can reuse existing goroutines, thereby reducing creation and destruction overhead.
Practical case:
func main() { // 创建一个 goroutine 池,包含 10 个 goroutine pool := sync.Pool{ New: func() interface{} { return new(MyGoroutine) }, } // 从 goroutine 池中获取 goroutine goroutine := pool.Get().(*MyGoroutine) // 使用 goroutine 执行任务 // 将 goroutine 归还到池中 pool.Put(goroutine) } type MyGoroutine struct { // ... Goroutine 的代码和状态 }
By using the goroutine pool, the creation and destruction overhead of goroutine can be reduced and performance improved.
The above is the detailed content of How to deal with high concurrency scenarios in Golang technical performance optimization?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



Reading and writing files safely in Go is crucial. Guidelines include: Checking file permissions Closing files using defer Validating file paths Using context timeouts Following these guidelines ensures the security of your data and the robustness of your application.

How to configure connection pooling for Go database connections? Use the DB type in the database/sql package to create a database connection; set MaxOpenConns to control the maximum number of concurrent connections; set MaxIdleConns to set the maximum number of idle connections; set ConnMaxLifetime to control the maximum life cycle of the connection.

In high-concurrency scenarios, according to benchmark tests, the performance of the PHP framework is: Phalcon (RPS2200), Laravel (RPS1800), CodeIgniter (RPS2000), and Symfony (RPS1500). Actual cases show that the Phalcon framework achieved 3,000 orders per second during the Double Eleven event on the e-commerce website.

The Go framework stands out due to its high performance and concurrency advantages, but it also has some disadvantages, such as being relatively new, having a small developer ecosystem, and lacking some features. Additionally, rapid changes and learning curves can vary from framework to framework. The Gin framework is a popular choice for building RESTful APIs due to its efficient routing, built-in JSON support, and powerful error handling.

The difference between the GoLang framework and the Go framework is reflected in the internal architecture and external features. The GoLang framework is based on the Go standard library and extends its functionality, while the Go framework consists of independent libraries to achieve specific purposes. The GoLang framework is more flexible and the Go framework is easier to use. The GoLang framework has a slight advantage in performance, and the Go framework is more scalable. Case: gin-gonic (Go framework) is used to build REST API, while Echo (GoLang framework) is used to build web applications.

JSON data can be saved into a MySQL database by using the gjson library or the json.Unmarshal function. The gjson library provides convenience methods to parse JSON fields, and the json.Unmarshal function requires a target type pointer to unmarshal JSON data. Both methods require preparing SQL statements and performing insert operations to persist the data into the database.

Best practices: Create custom errors using well-defined error types (errors package) Provide more details Log errors appropriately Propagate errors correctly and avoid hiding or suppressing Wrap errors as needed to add context

The FindStringSubmatch function finds the first substring matched by a regular expression: the function returns a slice containing the matching substring, with the first element being the entire matched string and subsequent elements being individual substrings. Code example: regexp.FindStringSubmatch(text,pattern) returns a slice of matching substrings. Practical case: It can be used to match the domain name in the email address, for example: email:="user@example.com", pattern:=@([^\s]+)$ to get the domain name match[1].
