Common design patterns in C++ concurrent programming
In C++ concurrent programming, the use of design patterns can improve the readability, maintainability and scalability of the code. Common patterns include: producer-consumer pattern: one thread generates data and other threads consume data. . Reader-writer mode: Multiple readers can access shared resources at the same time, but only one writer can access it. Monitor mode: protects concurrent access to shared resources, enforces synchronization and status checks. Thread pool mode: Create thread groups in advance to avoid the overhead of frequently creating and destroying threads.
Common design patterns in C++ concurrent programming
In concurrent programming, the use of design patterns can significantly improve the reliability of the code. Readability, maintainability and scalability. The following lists some common patterns in C++ concurrent programming:
Producer-Consumer Pattern
In this pattern, a producer thread generates data, And one or more consumer threads consume this data. Common implementation methods are to use queues or shared memory.
Example:
class Producer { public: void produce(const T& data) { std::lock_guard<std::mutex> lock(queue_mutex); queue.push(data); } private: std::queue<T> queue; std::mutex queue_mutex; }; class Consumer { public: void consume() { std::unique_lock<std::mutex> lock(queue_mutex); if (queue.empty()) { condition_variable.wait(lock); } const T& data = queue.front(); queue.pop(); lock.unlock(); // ... } private: std::shared_ptr<Producer> producer; std::condition_variable condition_variable; std::mutex queue_mutex; };
Reader-Writer Mode
This mode allows multiple readers to access shared resources at the same time, but Only one writer can access it. Reentrant locks or read-write locks are often used to implement this pattern.
Example:
class ReadWriteLock { public: void read_lock() { while (write_locked) { unique_lock<std::mutex> lock(read_mutex); read_count++; } } void read_unlock() { std::lock_guard<std::mutex> lock(read_mutex); read_count--; } void write_lock() { std::lock_guard<std::mutex> lock(write_mutex); while (read_count > 0) { /* 等待读完成 */} write_locked = true; } void write_unlock() { std::lock_guard<std::mutex> lock(write_mutex); write_locked = false; } private: bool write_locked = false; int read_count = 0; std::mutex read_mutex; std::mutex write_mutex; };
Monitor Pattern
Monitor pattern protects concurrency by limiting data access to a single object Access shared resources. Monitor objects encapsulate data and operations and enforce synchronization and status checking.
Example:
class Account { public: void deposit(int amount) { std::lock_guard<std::mutex> lock(balance_mutex); balance += amount; } int withdraw(int amount) { std::lock_guard<std::mutex> lock(balance_mutex); if (amount <= balance) { balance -= amount; return amount; } return 0; } int get_balance() { std::lock_guard<std::mutex> lock(balance_mutex); return balance; } private: int balance = 0; std::mutex balance_mutex; };
Thread pool mode
Thread pool mode provides a pre-created thread group that is controlled by the client Used by end threads. By using a thread pool, you can avoid the overhead of frequently creating and destroying threads.
Example:
class ThreadPool { public: ThreadPool(int num_threads) { for (int i = 0; i < num_threads; i++) { threads.emplace_back(std::thread([this] { while (true) { std::function<void()> task; { std::unique_lock<std::mutex> lock(tasks_mutex); if (tasks.empty()) { condition_variable.wait(lock); } task = std::move(tasks.front()); tasks.pop(); } task(); } })); } } void submit(std::function<void()> task) { std::lock_guard<std::mutex> lock(tasks_mutex); tasks.push(std::move(task)); condition_variable.notify_one(); } private: std::vector<std::jthread> threads; std::queue<std::function<void()>> tasks; std::mutex tasks_mutex; std::condition_variable condition_variable; };
The above is the detailed content of Common design patterns in C++ concurrent programming. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.
