Table of Contents
#C++ High-Performance Server Architecture: Common Pitfalls and Solutions
Trap 1: Overuse of atomic operations
Solution:
Trap 2: Blocking I/O
Trap 3: Thread contention
Trap 4: Lack of locality
Trap 5: Copy Overhead
Practical case:
Home Backend Development C++ Common mistakes and solutions for building high-performance server architectures using C++

Common mistakes and solutions for building high-performance server architectures using C++

Jun 02, 2024 pm 07:41 PM
c++ High performance server

When building high-performance C++ servers, common pitfalls include: overuse of atomic operations, blocking I/O, thread contention, lack of locality, and copy overhead. Solutions include using lock-free data structures, asynchronous I/O operations, careful thread synchronization strategies, optimizing memory layout, and avoiding unnecessary object copies. By avoiding these pitfalls, you can build an architecture that maximizes server performance.

使用 C++ 构建高性能服务器架构的常见错误和解决方案

#C++ High-Performance Server Architecture: Common Pitfalls and Solutions

Building high-performance servers requires careful handling and avoiding common pitfalls. Here are some common mistakes and suggested solutions:

Trap 1: Overuse of atomic operations

Solution:

Use lock-free data structures and algorithms. Consider using concurrent queues and atomic counters to avoid lock overhead.

Trap 2: Blocking I/O

Solution:

Use asynchronous I/O operations (such as epoll() and libuv ). This allows the server to handle multiple concurrent connections without blocking a single thread.

Trap 3: Thread contention

Solution:

Carefully consider your thread synchronization strategy. Use mutexes and condition variables, and use lock-free data structures in high contention areas.

Trap 4: Lack of locality

Solution:

Store related data in adjacent memory locations. Optimize memory layout to reduce cache misses. Consider using NUMA architecture for memory optimization.

Trap 5: Copy Overhead

Solution:

Avoid unnecessary object copying. Use pass-by-reference and shared pointers to share data. Consider using a pooling strategy to reuse objects.

Practical case:

Error: Use a large number of threads to process parallel tasks, resulting in thread contention.

Solution: Use lock-free queues and thread pools to manage tasks.

Error: Blocking I/O call causing high server response time.

Solution: Use epoll to listen to socket events and process I/O requests asynchronously after the event occurs.

By avoiding these pitfalls and implementing appropriate solutions, you can build a high-performance C++ server architecture that maximizes throughput and response time.

The above is the detailed content of Common mistakes and solutions for building high-performance server architectures using C++. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

What is the role of char in C strings What is the role of char in C strings Apr 03, 2025 pm 03:15 PM

In C, the char type is used in strings: 1. Store a single character; 2. Use an array to represent a string and end with a null terminator; 3. Operate through a string operation function; 4. Read or output a string from the keyboard.

Four ways to implement multithreading in C language Four ways to implement multithreading in C language Apr 03, 2025 pm 03:00 PM

Multithreading in the language can greatly improve program efficiency. There are four main ways to implement multithreading in C language: Create independent processes: Create multiple independently running processes, each process has its own memory space. Pseudo-multithreading: Create multiple execution streams in a process that share the same memory space and execute alternately. Multi-threaded library: Use multi-threaded libraries such as pthreads to create and manage threads, providing rich thread operation functions. Coroutine: A lightweight multi-threaded implementation that divides tasks into small subtasks and executes them in turn.

How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial How to calculate c-subscript 3 subscript 5 c-subscript 3 subscript 5 algorithm tutorial Apr 03, 2025 pm 10:33 PM

The calculation of C35 is essentially combinatorial mathematics, representing the number of combinations selected from 3 of 5 elements. The calculation formula is C53 = 5! / (3! * 2!), which can be directly calculated by loops to improve efficiency and avoid overflow. In addition, understanding the nature of combinations and mastering efficient calculation methods is crucial to solving many problems in the fields of probability statistics, cryptography, algorithm design, etc.

distinct function usage distance function c usage tutorial distinct function usage distance function c usage tutorial Apr 03, 2025 pm 10:27 PM

std::unique removes adjacent duplicate elements in the container and moves them to the end, returning an iterator pointing to the first duplicate element. std::distance calculates the distance between two iterators, that is, the number of elements they point to. These two functions are useful for optimizing code and improving efficiency, but there are also some pitfalls to be paid attention to, such as: std::unique only deals with adjacent duplicate elements. std::distance is less efficient when dealing with non-random access iterators. By mastering these features and best practices, you can fully utilize the power of these two functions.

How to apply snake nomenclature in C language? How to apply snake nomenclature in C language? Apr 03, 2025 pm 01:03 PM

In C language, snake nomenclature is a coding style convention, which uses underscores to connect multiple words to form variable names or function names to enhance readability. Although it won't affect compilation and operation, lengthy naming, IDE support issues, and historical baggage need to be considered.

Usage of releasesemaphore in C Usage of releasesemaphore in C Apr 04, 2025 am 07:54 AM

The release_semaphore function in C is used to release the obtained semaphore so that other threads or processes can access shared resources. It increases the semaphore count by 1, allowing the blocking thread to continue execution.

Issues with Dev-C version Issues with Dev-C version Apr 03, 2025 pm 07:33 PM

Dev-C 4.9.9.2 Compilation Errors and Solutions When compiling programs in Windows 11 system using Dev-C 4.9.9.2, the compiler record pane may display the following error message: gcc.exe:internalerror:aborted(programcollect2)pleasesubmitafullbugreport.seeforinstructions. Although the final "compilation is successful", the actual program cannot run and an error message "original code archive cannot be compiled" pops up. This is usually because the linker collects

C   and System Programming: Low-Level Control and Hardware Interaction C and System Programming: Low-Level Control and Hardware Interaction Apr 06, 2025 am 12:06 AM

C is suitable for system programming and hardware interaction because it provides control capabilities close to hardware and powerful features of object-oriented programming. 1)C Through low-level features such as pointer, memory management and bit operation, efficient system-level operation can be achieved. 2) Hardware interaction is implemented through device drivers, and C can write these drivers to handle communication with hardware devices.

See all articles