Home Backend Development C++ What role does destructor play in polymorphism in C++?

What role does destructor play in polymorphism in C++?

Jun 03, 2024 pm 08:30 PM
polymorphism destructor

Destructors are crucial in C++ polymorphism, ensuring that derived class objects properly clean up memory when they are destroyed. Polymorphism allows objects of different types to respond to the same method call. The destructor is automatically called when an object is destroyed to release its memory. The derived class destructor calls the base class destructor to ensure that the base class memory is released.

C++ 中析构函数在多态性中扮演什么角色?

The role of destructor in polymorphism in C++

The role of destructor in polymorphism in C++ It plays a vital role in ensuring that the memory of derived class objects is cleaned up in an appropriate manner when they are destroyed.

Introduction to Polymorphism

Polymorphism refers to the ability to allow objects of different types to respond to the same method call. In C++, this is accomplished through inheritance and virtual functions.

Destructor

The destructor is a special member function associated with a class that is automatically called when an object of that class is destroyed. It is responsible for freeing any memory or resources allocated by the object.

The role of destructor in polymorphism

When a derived class object is created, memory will be allocated to store data members unique to the derived class. However, when the derived class object is destroyed, the memory of the base class also needs to be released. The destructor ensures this by calling the base class destructor.

Practical case

Consider the following code:

class Base {
public:
    Base() { std::cout << "Base constructed" << std::endl; }
    virtual ~Base() { std::cout << "Base destructed" << std::endl; }
};

class Derived : public Base {
public:
    Derived() { std::cout << "Derived constructed" << std::endl; }
    ~Derived() { std::cout << "Derived destructed" << std::endl; }
};

int main() {
    Base* base = new Derived();
    delete base;
    return 0;
}
Copy after login

Output:

Base constructed
Derived constructed
Derived destructed
Base destructed
Copy after login

In this example , the Derived class is derived from the Base class. When a Derived object is created via the new operator, both the Derived and Base constructors are called. When the object is destroyed through the delete operator, the Derived destructor will be called first to release the memory of the Derived class. Then, the Base destructor will be called to release the memory of the Base class.

The above is the detailed content of What role does destructor play in polymorphism in C++?. For more information, please follow other related articles on the PHP Chinese website!

Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
2 weeks ago By 尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

How do inheritance and polymorphism affect class coupling in C++? How do inheritance and polymorphism affect class coupling in C++? Jun 05, 2024 pm 02:33 PM

Inheritance and polymorphism affect the coupling of classes: Inheritance increases coupling because the derived class depends on the base class. Polymorphism reduces coupling because objects can respond to messages in a consistent manner through virtual functions and base class pointers. Best practices include using inheritance sparingly, defining public interfaces, avoiding adding data members to base classes, and decoupling classes through dependency injection. A practical example showing how to use polymorphism and dependency injection to reduce coupling in a bank account application.

What role does destructor play in polymorphism in C++? What role does destructor play in polymorphism in C++? Jun 03, 2024 pm 08:30 PM

Destructors are crucial in C++ polymorphism, ensuring that derived class objects properly clean up memory when they are destroyed. Polymorphism allows objects of different types to respond to the same method call. The destructor is automatically called when an object is destroyed to release its memory. The derived class destructor calls the base class destructor to ensure that the base class memory is released.

How does C++ function overloading achieve polymorphism? How does C++ function overloading achieve polymorphism? Apr 13, 2024 pm 12:21 PM

Function overloading can be used to achieve polymorphism, where a derived class method is called through a base class pointer and the compiler selects the overloaded version based on the actual parameter types. In the example, the Animal class defines a virtual makeSound() function, and the Dog and Cat classes rewrite this function. When makeSound() is called through the Animal* pointer, the compiler will call the corresponding rewritten version based on the pointed object type, thus achieving polymorphism. sex.

Java Interfaces and Abstract Classes: The Road to Programming Heaven Java Interfaces and Abstract Classes: The Road to Programming Heaven Mar 04, 2024 am 09:13 AM

Interface: An implementationless contract interface defines a set of method signatures in Java but does not provide any concrete implementation. It acts as a contract that forces classes that implement the interface to implement its specified methods. The methods in the interface are abstract methods and have no method body. Code example: publicinterfaceAnimal{voideat();voidsleep();} Abstract class: Partially implemented blueprint An abstract class is a parent class that provides a partial implementation that can be inherited by its subclasses. Unlike interfaces, abstract classes can contain concrete implementations and abstract methods. Abstract methods are declared with the abstract keyword and must be overridden by subclasses. Code example: publicabstractcla

What are the advantages and disadvantages of polymorphism in C++? What are the advantages and disadvantages of polymorphism in C++? Jun 04, 2024 pm 08:08 PM

Advantages and Disadvantages of C++ Polymorphism: Advantages: Code Reusability: Common code can handle different object types. Extensibility: Easily add new classes without modifying existing code. Flexibility and maintainability: separation of behavior and type improves code flexibility. Disadvantages: Runtime overhead: Virtual function dispatch leads to increased overhead. Code Complexity: Multiple inheritance hierarchies add complexity. Binary size: Virtual function usage increases binary file size. Practical case: In the animal class hierarchy, polymorphism enables different animal objects to make sounds through Animal pointers.

Polymorphism of function overriding and inheritance: the art of realizing flexible calls between objects Polymorphism of function overriding and inheritance: the art of realizing flexible calls between objects May 02, 2024 am 10:30 AM

Function rewriting and inheritance polymorphism are two key concepts in OOP to achieve flexible object calling: Function rewriting: the derived class redefines the function of the same name in the base class, and executes the specific implementation in the derived class when called. Polymorphism of inheritance: A derived class can be used in the same way as a base class, and when a method is called through a base class reference, its implementation in the derived class is executed.

How does polymorphism support object-oriented development in C++? How does polymorphism support object-oriented development in C++? Jun 03, 2024 pm 10:37 PM

Polymorphism is a concept in object-oriented programming that allows objects to exist in multiple forms, making code more flexible, scalable, and maintainable. Polymorphism in C++ leverages virtual functions and inheritance, as well as pure virtual functions and abstract classes to implement dynamic binding, allowing us to create class hierarchies that change behavior based on the actual type of the object. In practice, polymorphism allows us to create base class pointers to different derived class objects and call the appropriate functions based on the actual type of the object.

The role of C++ function return value types in polymorphism The role of C++ function return value types in polymorphism Apr 13, 2024 pm 09:12 PM

In polymorphism, the function return value type specifies the specific object type returned when a derived class overrides a base class method. The return value type of a derived class method can be the same as the base class or more specific, allowing more derived types to be returned, thereby increasing flexibility.

See all articles