


Concurrency-safe design of data structures in C++ concurrent programming?
In C++ concurrent programming, the concurrency-safe design of data structures is crucial: Critical section: Use a mutex lock to create a code block, allowing only one thread to execute at the same time. Read-write lock: allows multiple threads to read at the same time, but only one thread to write at the same time. Lock-free data structures: Use atomic operations to achieve concurrency safety without locks. Practical case: Thread-safe queue: Use critical sections to protect queue operations and achieve thread safety.
Concurrency safety design of data structures in C++ concurrent programming
In concurrent programming, it is crucial to ensure the thread safety of data structures . This prevents inconsistencies and data corruption when multiple threads access and modify data structures simultaneously. This article introduces concurrency-safe design techniques for various data structures in C++ concurrent programming and provides practical examples.
Critical Section
The critical section is a block of code that can only be executed by one thread at the same time. In C++, you can use a mutex lock (std::mutex) to create a critical section, as follows:
std::mutex m; void func() { std::lock_guard<std::mutex> lock(m); // 受保护的临界区代码 }
Read-write lock
Read-write lock allows multiple threads Data structures are read simultaneously, but can only be written by one thread simultaneously. In C++11, read-write locks can be implemented through std::shared_timed_mutex:
std::shared_timed_mutex rw_lock; void read_func() { std::shared_lock<std::shared_timed_mutex> lock(rw_lock); // 读操作 } void write_func() { std::unique_lock<std::shared_timed_mutex> lock(rw_lock); // 写操作 }
Lock-free data structures
Lock-free data structures use specific techniques to operate without locks Achieve concurrency safety under the circumstances. A common approach is to use atomic operations, which perform reads and writes in a single indivisible operation. In C++, you can use std::atomic
std::atomic<int> counter; void inc_counter() { ++counter; }
Practical case: Thread-safe queue
The following is a thread-safe queue implementation Example:
class ConcurrentQueue { private: std::mutex m; std::queue<int> q; public: void push(int value) { std::lock_guard<std::mutex> lock(m); q.push(value); } int pop() { std::lock_guard<std::mutex> lock(m); if (q.empty()) { throw std::runtime_error("Queue is empty"); } int value = q.front(); q.pop(); return value; } };
Thread safety of queues is achieved by using critical sections to protect queue operations.
The above is the detailed content of Concurrency-safe design of data structures in C++ concurrent programming?. For more information, please follow other related articles on the PHP Chinese website!

Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Notepad++7.3.1
Easy-to-use and free code editor

SublimeText3 Chinese version
Chinese version, very easy to use

Zend Studio 13.0.1
Powerful PHP integrated development environment

Dreamweaver CS6
Visual web development tools

SublimeText3 Mac version
God-level code editing software (SublimeText3)

Hot Topics



The steps to implement the strategy pattern in C++ are as follows: define the strategy interface and declare the methods that need to be executed. Create specific strategy classes, implement the interface respectively and provide different algorithms. Use a context class to hold a reference to a concrete strategy class and perform operations through it.

Golang and C++ are garbage collected and manual memory management programming languages respectively, with different syntax and type systems. Golang implements concurrent programming through Goroutine, and C++ implements it through threads. Golang memory management is simple, and C++ has stronger performance. In practical cases, Golang code is simpler and C++ has obvious performance advantages.

Nested exception handling is implemented in C++ through nested try-catch blocks, allowing new exceptions to be raised within the exception handler. The nested try-catch steps are as follows: 1. The outer try-catch block handles all exceptions, including those thrown by the inner exception handler. 2. The inner try-catch block handles specific types of exceptions, and if an out-of-scope exception occurs, control is given to the external exception handler.

To iterate over an STL container, you can use the container's begin() and end() functions to get the iterator range: Vector: Use a for loop to iterate over the iterator range. Linked list: Use the next() member function to traverse the elements of the linked list. Mapping: Get the key-value iterator and use a for loop to traverse it.

C++ template inheritance allows template-derived classes to reuse the code and functionality of the base class template, which is suitable for creating classes with the same core logic but different specific behaviors. The template inheritance syntax is: templateclassDerived:publicBase{}. Example: templateclassBase{};templateclassDerived:publicBase{};. Practical case: Created the derived class Derived, inherited the counting function of the base class Base, and added the printCount method to print the current count.

C++ templates are widely used in actual development, including container class templates, algorithm templates, generic function templates and metaprogramming templates. For example, a generic sorting algorithm can sort arrays of different types of data.

How to access elements in C++ STL container? There are several ways to do this: Traverse a container: Use an iterator Range-based for loop to access specific elements: Use an index (subscript operator []) Use a key (std::map or std::unordered_map)

Causes and solutions for errors when using PECL to install extensions in Docker environment When using Docker environment, we often encounter some headaches...
